PRACTICE Final Exam CS161

Note for Fall 2025: This is based on an old exam from a previous quarter; it may have
covered slightly different things and had different HW problems, which would make these
problems differently easy or hard than they are this quarter. But they are all good practice
problems!

Instructions

e Answer all of the questions as well as you can. You have three hours.
e The exam is non-collaborative; you must complete it on your own.

e This exam is closed-book, except for up to three double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

General Advice

e If you get stuck on a question or a part, move on and come back to it later. The
questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

e Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

e There are 105 + 3 (bonus) total points on this practice exam. There are five problems
across 17 pages.

Name and SUNet ID (please print clearly):

1. (20 pt.) [Multiple Choice!] For each of the parts below, clearly shade in all of the
answers that are correct:

o O s U O

Filled in means: Empty means: Anything else
“This is a true “This is not may be marked
statement” true statement” as incorrect!

Unless stated otherwise, we are always referring to worst-case analysis guarantees. Do
not make any assumptions that are not stated in the problem.

Grading note: Each of the “main” answers is worth one point. The “None of the above” option on
its own is not worth any points, it’s just there so that you can register that you intentionally didn’t
select anything. If you select “None of the above” and any other answer, we will ignore your “None of

the above”. Ambiguously filled in answers will be marked as incorrect.

[We are expecting: For each part, clearly filled-in answers. No justification is re-
quired or will be considered when grading. Ambiguously filled-in answers will be marked
as incorrect.|

(a) (4 pt.) Which of the following quantities are O(n?)? Fill in all that apply.
O gln) = 251"
O T(n), where T'(n) =2T(n — 1) + 1 for n > 1, and 7'(0) = 1.
(O The worst-case running time of QuickSort

(O The maximum number of items that can be inserted into a Red-Black tree
before its height might (in the worst-case) exceed 100logn

(O None of the above.

(b) (4 pt.) Recall the 0/1 Knapsack problem from lecture, where the objective is to
maximize the value of the knapsack, given that we have a single copy of each of
n items. Which of the following are true? Fill in all that apply.

(O The optimal solution can always be obtained using a greedy algorithm that
greedily takes the items with the best value-to-weight ratio.

(O Let KIk] denote the maximum value you can fit into a knapsack of capacity
k. Then there is an O(n)-time DP solution to 0/1 Knapsack that uses the
subproblems Kk].

(O Any correct DP solution to this problem must be implemented in a top-down
way.

(O Any correct DP solution to this problem must be implemented in a bottom-up
way.

(O None of the above.

(c) (4 pt.) Let G = (V, E) be a weighted directed graph. The shortest path from a
node s € V to a node t € V will remain unchanged if:

(O Each edge weight w(v,u) is replaced by C' - w(v,) for a constant C' > 0.

(O Each edge weight w(v,u) is replace by w(v,u) + C for a constant C' > 0.

(O Each edge weight w(v,u) is replace by w(v,u) — C for a constant C' > 0.

(O Each edge weight w(v,u) is replace by w(v,u)/C for a constant C' > 0.

(O None of the above

(d) (4 pt.) Which of the following algorithms runs in O(n?) time? (Note: A fully-
connected graph is a graph in which there is an edge between every pair of nodes.)

(O Bellman-Ford on a fully-connected directed graph with n nodes.

(O Kosaraju’s algorithm on a fully-connected graph with n nodes.

(O Floyd-Warshall on a connected graph with n nodes, so that each node has
degree exactly 3.

(O Dijkstra’s algorithm (implemented with a Red-Black tree) on a directed acyclic
graph with n nodes and positive edge weights, so that each node has up to 7
outgoing edges.

(O None of the above.

(e) (4 pt.) Consider the graph G given below, where the labels without boxes are
capacities and the labels with boxes are flows in a flow from s to t. Which of the
following are true?

2

(O s — a — ¢ — tis an augmenting path from s to t.

(O s —=b— a— c¢c—tis an augmenting path from s to t.
(O The flow shown here is a maximum flow.

(O The minimum cut in this graph has value 4.

(O None of the above.

2. (20 pt.) [True or False?] For each of the parts below, answer either True or False,
and give a few sentences of explanation.

[We are expecting: Your answer (True or False) clearly stated, as well as a few
sentences of justification. Ambiguous answers (e.g., where both True and False appear
on the page) will be marked as incorrect.]

(a)

(b)

(4 pt.) True or False (and explain): It is possible to detect whether or not a
graph is bipartite in time O(n + m).

(4 pt.) True or False (and explain): The SCCs returned by Kosaraju’s algorithm
can be different based on which node the algorithm starts at.

(4 pt.) Suppose that you are working on a “Maps” app for the Stanford campus.
You are tasked with developing an algorithm to find the fastest route from any
point A on campus to any other point B. To model the problem, you make a
graph that represents all of the locations on campus, and an estimate of the time
it takes to get between any points that are directly connected by a road. To get the
estimates, you ride your bike between all the pairs of vertices on a sunny Saturday
afternoon and time yourself. After you've generated this weighted graph, you run
Dijkstra’s algorithm to find shortest paths.

True or false (and explain): the scenario above involves idealization, as we defined
it in the Embedded EthiCS lectures.

More parts on next page

(d) (4 pt.) Consider the following algorithm, which purports to find a minimum
spanning tree in an unweighted, undirected graph G:
e Maintain a set C of “components”, initialized to C = {{v}:v € V'}.
e Maintain a set of edges S, which we initialize to the empty set ().
e Until C consists of just one big component:
— Choose an arbitrary component C' € C.

— Let e = {u,v} be a minimum-weight edge in E so that v € C, v & C.
Let C’ be the component in C that contains v.

— Add e to S, and merge C' and C" in C.
e Return S.
Note that this algorithm is similar to Kruskal’s algorithm, except that instead of

picking a minimum weight edge crossing any two components to add to S, we
pick a minimum weight edge coming out of an arbitrary component.

True or False (and explain): this algorithm correctly returns a minimum spanning
tree.

another part on next page!

(e) (4 pt.) Suppose that ay,...,a are positive integers. For a positive integer x and
j <k, let D(x,j) denote the number of ways to write = as the sum of numbers in
{a1,...,a;}, where each number is used at most once and order doesn’t matter.

For example, if a; = 1,a2 = 2,a3 = 3 and a4 = 4, then there are two ways to make z =5
out of {a1,as,as,as}, namely 5 =2+ 3 =1+4. Thus, D(5,4) = 2.

You want to use the subproblems D(z, j) to design a dynamic programming algo-
rithm to compute D(x, k), the number of ways to write x as a sum of the numbers
aty ..., 0.

True or False (and explain): The following relationship is correct.

D(z,j) = D(z —aj,j — 1)+ D(x,j — 1)

If your answer is True, explain why; if it is False, explain what’s wrong and how
to fix it. (Don’t worry about base cases).

3. (20 + 3 BONUS pt.) [How to do it?] For each of the following, describe how to
accomplish it. You may use any result/algorithm from class as a black box, but you
must state clearly how you are using it (e.g., what are the inputs). If you modify a
result /algorithm from class, clearly state how you would modify it.

We have done the first one for you to give you an idea of what we are expecting.

[We are expecting: For each, a clear paragraph explaining how you would do it,
following the guidelines above. You may use pseudocode if it helps you be clear, but it
is not required. An explanation about why your approach is correct may be considered
for partial credit, but is not required.]

(-) (0 pt.) (Example) Given a directed, weighted graph G with n vertices and
m edges, possibly with negative edge weights, detect whether or not there is a
negative cycle in G in time O(n?).

Answer: Run the Floyd-Warshall algorithm for n steps, and suppose
that D™ is our final array. For each vertex v, check to see if D™[v, v] <
0. If you find such a v, output “negative cycle!” If there is no such v,
output “No negative cycle!”

Expanation for partial credit, just in case: This works because we
showed in class that D™ [v, v] is the length of the shortest path between
v and v, using the vertices from 1,...,n. So D™[v,v] is negative if and
only if there is a negative cycle containing v.

(a) (5 pt.) Suppose that there are n cities, some of which are connected by roads.
Each road (say from city A to city B) takes one hour to traverse, and costs
w(A, B) dollars in tolls. Find the cost of the cheapest path from city S to city T’
that takes at most four hours to traverse, or return None if no such path exists.

More parts on next page!

(b) (5 pt.) Suppose that users on a social media platform are represented by a
directed graph G = (V, E) with n nodes and m edges. Users are the nodes. If
there is an edge (a,b) € E from a to b, it means that user b follows user a on the
social media platform. Say that b is downstream of a if there is a directed path
from a to b in G is downstream of a if there is a directed path from a to b in G.

You create a new account and haven’t followed anyone yet. Given G, give an
algorithm that will find the smallest set of users you can follow to make sure that
you are downstream of all users on the platform.

Your algorithm should run in O(m + n) time.

(c) (5 pt.) Let G = (V,E) be a directed weighted graph, possibly with negative
weights, and vertex set V' = [v1,v9, -+ ,v,]. The all-pairs shortest path matriz
(APSPM) of G is an n x n matrix A where A[i, j] is the shortest path distance
in G between v; and v.

Given G, its APSPM A, and a new edge e = (v,,v,) € E with weight w, find the
APSPM of G after adding e to E. Assume that there no negative cycles before
or after e is added. Your algorithm should run in O(n?) time.

More parts on next page!

(d) (5 pt.) Suppose there are N students and N classes. Each student ¢ has a set S;
of classes that they are interested in taking. Suppose that each student can take
at most 4 classes, and each class can seat at most 30 students. Given the lists S;,
in time at most O(N®), find a way to match students to classes, so that:
e No student is in more than 4 classes and no class has more than 30 students.
e No student is in a class they aren’t interested in.

e The assignment has as many student-class matches as possible.

(e) (3 BONUS pt.) Let G = (V, E) be a directed unweighted graph. We say that
G is “kind-of-connected” if for every u,v € G, either there is a path from wu to
v, or there is a path from v to u (or possibly both). Given an algorithm that
determines whether or not G is kind-of-connected, in time O(n + m).

4. (25 pt.) [Greedy Algorithms!]

There are n final exams today at Stanford; exam ¢ is scheduled to begin at time a;
and end at time b;. Two exams which overlap cannot be administered in the same
classroom; two exams ¢ and j are defined to be overlapping if [a;, b;] N [a;,b;] # 0
(including if b; = a;, so one starts exactly at the time that the other ends). Consider

the following problem.

Input: Arrays A and B of length n so that Afi] = a; and B[i] = b;.

Output: The smallest number of classrooms necessary to schedule all of the exams,
and an optimal assignment of exams to classrooms.

For example: Suppose there are three exams, with start and finish times as given below:

il v 72]3 |
a; || 12pm | 4pm | 2pm
bi dpm | 6pm | 5pm

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room
1 and Exam 3 can be scheduled in Room 2.

(a) (10 pt.) Design a greedy algorithm that solves the following problem. Your
algorithm should run in time O(nlog(n) + nk), where k is the minimum number

of classrooms needed.

[We are expecting: Pseudocode AND a short English description, as well as
a short justification of the running time.

algorithm is correct (yet).|

10

You do not need to prove that your

More space on next page!

More space for your greedy algorithm!

Another part on next page!

11

(b) (15 pt.) Prove formally that your greedy algorithm from part (a) is correct.

[We are expecting: A formal proof. If you do a proof by induction, be sure to
clearly state your inductive hypothesis, base case, inductive step, and conclusion.|

12

5. (20 pt.) [Dynamic Programming!] Suppose you have n coins with distinct integer
values cg,c1,...,¢,-1, so that ¢; > 0 for all 7. In this problem you will design a
dynamic programming algorithm which takes as input the values ¢y, ..., c,_1, and
an integer k£ > 0, and outputs the number of ways to divide the coins into two piles so
that both piles have total value at least k. Your algorithm should run in time O(nk?).

For example, if n = 4 and k = 4, and the four coins have values ¢ = 1,¢1 = 2,¢3 = 4,¢4 = 5,
then the algorithm should output 8, since there are eight ways to split up the coins in to two
piles, where each pile has total value at least 4: {1,2,4} and {5}; {1,2,5} and {4}; {1,4} and
{2,5}; {1,5} and {2,4}; and then the same things again but swapping the piles.

(a) (10 pt.) What are the sub-problems you will use? What is the recursive rela-
tionship between the sub-problems, and what base cases do they satisfy?

[We are expecting: A clear definition of your sub-problems, the recursive rela-
tionship that they satisfy, and a complete set of base cases. You should also give
a clear explanation of why your recursive relationship and base cases hold.

Another part on next page.

13

(b) (5 pt.) Write pseudocode for your algorithm.

[We are expecting: Just pseudocode. You do not need to explain what it is doing
or why it works, but it should use the sub-problems you defined in the previous
part.|

(c) (5 pt.) Now suppose that the coin values and the value k are not necessarily
integers (but are still positive). Would your algorithm from part (b) still return
the correct answer? If not, how would you fix it so that it would return the correct
answer? Would the running time still be O(nk?)?

[We are expecting: The following things:
o Whether your algorithm from (b) would still work and an explanation.
e Pseudocode OR a high-level description of how to fix it if not.
o Whether or not the running time would still be O(nk?), and why or why not.

This is the end of the exam/!

14

This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you want
extra work on this page to be graded, clearly label which question your extra work is for.

15

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.

16

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.

17

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.

18

