
PRACTICE Final Exam Solution CS161

Note for Fall 2025: This is based on an old exam from a previous quarter; it may have
covered slightly different things and had different HW problems, which would make these
problems differently easy or hard than they are this quarter. But they are all good practice
problems!

Instructions
• Answer all of the questions as well as you can. You have three hours.

• The exam is non-collaborative; you must complete it on your own.

• This exam is closed-book, except for up to three double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

General Advice
• If you get stuck on a question or a part, move on and come back to it later. The

questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

• Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

• There are 105 + 3 (bonus) total points on this practice exam. There are five problems
across 17 pages.

Name and SUNet ID (please print clearly):

SOLUTION
__

1

1. (20 pt.) [Multiple Choice!] For each of the parts below, clearly shade in all of the
answers that are correct:

⃝ ⃝ ⃝⃝ ⃝

Filled in means:
“This is a true

statement”

Empty means:
“This is not

true statement”

Anything else
may be marked

as incorrect!

Unless stated otherwise, we are always referring to worst-case analysis guarantees. Do
not make any assumptions that are not stated in the problem.

Grading note: Each of the “main” answers is worth one point. The “None of the above” option on
its own is not worth any points, it’s just there so that you can register that you intentionally didn’t
select anything. If you select “None of the above” and any other answer, we will ignore your “None of
the above”. Ambiguously filled in answers will be marked as incorrect.

[We are expecting: For each part, clearly filled-in answers. No justification is re-
quired or will be considered when grading. Ambiguously filled-in answers will be marked
as incorrect.]

(a) (4 pt.) Which of the following quantities are O(n2)? Fill in all that apply.

⃝ g(n) = 2log4 n

⃝ T (n), where T (n) = 2T (n− 1) + 1 for n ≥ 1, and T (0) = 1.
⃝ The worst-case running time of QuickSort
⃝ The maximum number of items that can be inserted into a Red-Black tree

before its height might (in the worst-case) exceed 100 log n

⃝ None of the above.

SOLUTION: T, F, T, F.

• A is true since g(n) = 2log2(n)/ log2(4) = 2log2(n)/2 = n1/2 =
√
n, which is indeed

O(n2).
• B is false. A quick way to get some intuition for this is to note that it looks

like it scales similarly to T (n) = T (n − 1) + T (n − 2) (aka, the Fibonacci
numbers), and we saw in class that those grow exponentially quickly. To get

2

more confidence in our answer, we can unroll the recurrence to see:

T (n) = 2T (n− 1) + 1

= 2(2(T (n− 2) + 1) + 1

= 4T (n− 2) + 3

= 4(2T (n− 3) + 1) + 3

= 8T (n− 3) + 7

= 8(2T (n− 4) + 1) + 7

= 16T (n− 4) + 15

etc

and looking at the pattern, we can guess that

T (n) = 2jT (n− j) + 2j − 1.

(If we wanted to be really sure, we could prove this formally by induction).
Plugging in j = n, we get that T (n) = 2n + 2n − 1 = 2n+1 − 1, which is way
bigger than O(n2).

• C is true by our analysis of Quicksort.
• D is false, because we had a lemma that said that if N items are inserted

into an RB tree, it will have height at most 2 log2(N + 1). This implies
that we can insert, say, n49 items into an RBTree and get height at most
2 log2(n

49 + 1) ≤ 100 log2 n. So “the max number of items that we can insert
into an RBTree before the height might exceed 100 log2 n” is at least n49. In
particular, it is not O(n2).

(b) (4 pt.) Recall the 0/1 Knapsack problem from lecture, where the objective is to
maximize the value of the knapsack, given that we have a single copy of each of
n items. Which of the following are true? Fill in all that apply.
⃝ The optimal solution can always be obtained using a greedy algorithm that

greedily takes the items with the best value-to-weight ratio.
⃝ Let K[k] denote the maximum value you can fit into a knapsack of capacity

k. Then there is an O(n)-time DP solution to 0/1 Knapsack that uses the
subproblems K[k].

⃝ Any correct DP solution to this problem must be implemented in a top-down
way.

⃝ Any correct DP solution to this problem must be implemented in a bottom-up
way.

⃝ None of the above.

3

SOLUTION: None of the above. A is false because the greedy algorithm may
fail (we saw a counter-example in class). B is false since we need some way to
“remember” which items have been used before – we saw this in class (and we saw
a 2-dimensional DP way to do it). Both C and D are false: we can implement a
DP solution as either top-down or bottom-up.

4

(c) (4 pt.) Let G = (V,E) be a weighted directed graph. The shortest path from a
node s ∈ V to a node t ∈ V will remain unchanged if:

⃝ Each edge weight w(v, u) is replaced by C · w(v, u) for a constant C > 0.
⃝ Each edge weight w(v, u) is replace by w(v, u) + C for a constant C > 0.
⃝ Each edge weight w(v, u) is replace by w(v, u)− C for a constant C > 0.
⃝ Each edge weight w(v, u) is replace by w(v, u)/C for a constant C > 0.
⃝ None of the above

SOLUTION: T,F,F,T. First, note that A and D are actually the same (by
replacing C with 1/C), so it’s enough to just argue that A is correct. To see this,
notice that if a path P had cost x, and P ′ had cost x′ > x, then after we update
the weights, the paths have cost Cx and Cx′, respectively; in particular, the cost
of P is still smaller than the cost of P ′. So the shortest path stays the same.
To see that B and C are false, notice that by adding or subtracting a constant from
each edge weight, the cost of a path P will change by C · [number of edges in P].
So if we have a path P that has two edges with weights 1 and 1, and then we have
a path P ′ with only one edge of weight 2.1, then P would be a shorter path than
P ′ before adding C. But after adding C = 1 (say), P has cost (1+1)+(1+1) = 4,
while P ′ has cost 2.1 + 1 = 3.1. So now P ′ is shorter than P . (A similar example
works when C is negative).

(d) (4 pt.) Which of the following algorithms runs in O(n2) time? (Note: A fully-
connected graph is a graph in which there is an edge between every pair of nodes.)

⃝ Bellman-Ford on a fully-connected directed graph with n nodes.
⃝ Kosaraju’s algorithm on a fully-connected graph with n nodes.
⃝ Floyd-Warshall on a connected graph with n nodes, so that each node has

degree exactly 3.
⃝ Dijkstra’s algorithm (implemented with a Red-Black tree) on a directed acyclic

graph with n nodes and positive edge weights, so that each node has up to 7
outgoing edges.

⃝ None of the above.

SOLUTION: F, T, F, T. A is false, since Bellman-Ford runs in time Θ(nm) =
Θ(n3) in the worst-case. B is true, since Kosaraju’s algorithm takes time O(n +
m) = O(n2) (since m = O(n2)). C is false, since the Floyd-Warshall algorithm
takes time Θ(n3) in the worst-case. D is true, since Dijkstra’s algorithm takes
time O((n + m) log n)) with an RB-tree. Since each node has up to 7 outgoing
edges, the number of edges is m ≤ 7n, so this is O(n log n), which is O(n2).

5

(e) (4 pt.) Consider the graph G given below, where the labels without boxes are
capacities and the labels with boxes are flows in a flow from s to t. Which of the
following are true?

a

b

c

d

s t

2

0

2

2
2

1

2

1

2

1

2 1

2

1

2 1

⃝ s→ a→ c→ t is an augmenting path from s to t.
⃝ s→ b→ a→ c→ t is an augmenting path from s to t.
⃝ The flow shown here is a maximum flow.
⃝ The minimum cut in this graph has value 4.
⃝ None of the above.

SOLUTION: F, T, F, T. Explanation: A is false because the edge from s to a
is full and so doesn’t exist in the residual graph.
B is true by the definition of an augmenting path: none of the “forwards” edges
are full, and the one “backwards” edge (a, b) is not empty.
C is false. One way to see this is that in B we found an augmenting path, so we
must be able to increase the flow. Another way to see it is just to find a bigger
flow: this flow has value 2, but the maximum flow has value 4 (set the flow on all
edges to 2, except set a→ b to 0).
D is true: we can prove this to ourselves by noticing that there is a flow of value
4 (mentioned above), and also a cut of cost 4 (e.g., cut both edges coming out of
s), and so the min-cut-max-flow theorem (more precisely, the corollary of it that
we saw in class) implies that the min cut and max flow are both 4.

6

2. (20 pt.) [True or False?] For each of the parts below, answer either True or False,
and give a few sentences of explanation.

[We are expecting: Your answer (True or False) clearly stated, as well as a few
sentences of justification. Ambiguous answers (e.g., where both True and False appear
on the page) will be marked as incorrect.]

(a) (4 pt.) True or False (and explain): It is possible to detect whether or not a
graph is bipartite in time O(n+m).

SOLUTION: This is true; we saw this in class as an application of BFS. (Note
for Fall 2025: we skipped bipartite matching in class, so we probably wouldn’t
put this on an exam; but it’s a good exercise to test your understanding of BFS
even if you haven’t seen it before! How would you detect this using BFS?)

(b) (4 pt.) True or False (and explain): The SCCs returned by Kosaraju’s algorithm
can be different based on which node the algorithm starts at.

SOLUTION: False. Any graph has a unique decomposition into SCCs; this
follows from the fact that “there is a path from v to u and a path from u to v” is
an equivalence relation on the vertices.

(c) (4 pt.) Suppose that you are working on a “Maps” app for the Stanford campus.
You are tasked with developing an algorithm to find the fastest route from any
point A on campus to any other point B. To model the problem, you make a
graph that represents all of the locations on campus, and an estimate of the time
it takes to get between any points that are directly connected by a road. To get the
estimates, you ride your bike between all the pairs of vertices on a sunny Saturday
afternoon and time yourself. After you’ve generated this weighted graph, you run
Dijkstra’s algorithm to find shortest paths.

7

True or false (and explain): the scenario above involves idealization, as we defined
it in the Embedded EthiCS lectures.

SOLUTION: True, this is a very idealized setting. For example, one assumption
we are making is that everyone has a bike, and everyone rides their bike at the
same speed that you do. A possible unintended consequence of these assumptions
are that people without bikes (or who bike slower or faster) may not be able
to use your tool as intended. Another thing that we are idealizing is that we
assume that the conditions and amount of traffic are the same as on a sunny
Saturday afternoon. However, on a rainy weekday during class-change periods,
bike conditions and traffic may differ. An unintended consequence of this could
be that people trying to use your app may either be late or bike too fast during
worse conditions; the latter could be a safety hazard.

More parts on next page

8

(d) (4 pt.) Consider the following algorithm, which purports to find a minimum
spanning tree in an unweighted, undirected graph G:

• Maintain a set C of “components”, initialized to C = {{v} : v ∈ V }.
• Maintain a set of edges S, which we initialize to the empty set ∅.
• Until C consists of just one big component:

– Choose an arbitrary component C ∈ C.
– Let e = {u, v} be a minimum-weight edge in E so that u ∈ C, v ̸∈ C.

Let C ′ be the component in C that contains v.
– Add e to S, and merge C and C ′ in C.

• Return S.

Note that this algorithm is similar to Kruskal’s algorithm, except that instead of
picking a minimum weight edge crossing any two components to add to S, we
pick a minimum weight edge coming out of an arbitrary component.
True or False (and explain): this algorithm correctly returns a minimum spanning
tree.

SOLUTION: This is true. The reason is basically the same as the reason that
Kruskal’s algorithm worked. The main step in the proof is to find a cut that
respects S, and then show that the edge we choose greedily is light for that cut.
In this case, we can use the cut between the component C and everything else:
this respects S since no edges in S cross the cut, and the edge {u, v} is light for
this cut because of the way we chose it.

another part on next page!

9

(e) (4 pt.) Suppose that a1, . . . , ak are positive integers. For a positive integer x and
j ≤ k, let D(x, j) denote the number of ways to write x as the sum of numbers in
{a1, . . . , aj}, where each number is used at most once and order doesn’t matter.

For example, if a1 = 1, a2 = 2, a3 = 3 and a4 = 4, then there are two ways to make x = 5
out of {a1, a2, a3, a4}, namely 5 = 2 + 3 = 1 + 4. Thus, D(5, 4) = 2.

You want to use the subproblems D(x, j) to design a dynamic programming algo-
rithm to compute D(x, k), the number of ways to write x as a sum of the numbers
a1, . . . , ak.
True or False (and explain): The following relationship is correct.

D(x, j) = D(x− aj, j − 1) +D(x, j − 1)

If your answer is True, explain why; if it is False, explain what’s wrong and how
to fix it. (Don’t worry about base cases).

SOLUTION: True, this is correct. The reason is that there are two things that
can happen: either aj is involved or it is not. If it is involved, the number of ways
to make x out of {a1, . . . , aj}, including aj, is the same as the number of ways to
make x − aj out of {a1, . . . , aj−1}, aka D(x − aj, j − 1). On the other hand, if
it’s not involved, then the number of ways is D(x, j− 1). Since we want the total
number of ways, we add the two together.

10

3. (20 + 3 BONUS pt.) [How to do it?] For each of the following, describe how to
accomplish it. You may use any result/algorithm from class as a black box, but you
must state clearly how you are using it (e.g., what are the inputs). If you modify a
result/algorithm from class, clearly state how you would modify it.

We have done the first one for you to give you an idea of what we are expecting.

[We are expecting: For each, a clear paragraph explaining how you would do it,
following the guidelines above. You may use pseudocode if it helps you be clear, but it
is not required. An explanation about why your approach is correct may be considered
for partial credit, but is not required.]

(-) (0 pt.) (Example) Given a directed, weighted graph G with n vertices and
m edges, possibly with negative edge weights, detect whether or not there is a
negative cycle in G in time O(n3).

Answer: Run the Floyd-Warshall algorithm for n steps, and suppose
that D(n) is our final array. For each vertex v, check to see if D(n)[v, v] <
0. If you find such a v, output “negative cycle!” If there is no such v,
output “No negative cycle!”

Expanation for partial credit, just in case: This works because we
showed in class that D(n)[v, v] is the length of the shortest path between
v and v, using the vertices from 1, . . . , n. So D(n)[v, v] is negative if and
only if there is a negative cycle containing v.

(a) (5 pt.) Suppose that there are n cities, some of which are connected by roads.
Each road (say from city A to city B) takes one hour to traverse, and costs
w(A,B) dollars in tolls. Find the cost of the cheapest path from city S to city T
that takes at most four hours to traverse, or return None if no such path exists.

SOLUTION: Run Bellman-Ford for four steps, starting at city S, and return
d(4)[T], using the notation from Lectures 11/12. We saw in class that after step i,
Bellman-Ford keeps track of the shortest path from S to any other vertex, among
all of the paths that contain at most i edges. Since each edge takes exactly one
hour, this is exactly the problem we want to solve, for i = 4.

More parts on next page!

11

(b) (5 pt.) Suppose that users on a social media platform are represented by a
directed graph G = (V,E) with n nodes and m edges. Users are the nodes. If
there is an edge (a, b) ∈ E from a to b, it means that user b follows user a on the
social media platform. Say that b is downstream of a if there is a directed path
from a to b in G is downstream of a if there is a directed path from a to b in G.
You create a new account and haven’t followed anyone yet. Given G, give an
algorithm that will find the smallest set of users you can follow to make sure that
you are downstream of all users on the platform.
Your algorithm should run in O(m+ n) time.

SOLUTION: Run Kosaraju’s algorithm to find the SCC DAG of G. Then
iterate through all of the SCCs. If there are no outgoing edges from an SCC C,
follow a user in C.

(c) (5 pt.) Let G = (V,E) be a directed weighted graph, possibly with negative
weights, and vertex set V = [v1, v2, · · · , vn]. The all-pairs shortest path matrix
(APSPM) of G is an n × n matrix A where A[i, j] is the shortest path distance
in G between vi and vj.
Given G, its APSPM A, and a new edge e = (va, vb) ̸∈ E with weight w, find the
APSPM of G after adding e to E. Assume that there no negative cycles before
or after e is added. Your algorithm should run in O(n2) time.

SOLUTION: For all i, j ∈ {1, . . . , n}, do:

A[i, j]← min{A[i, j], A[i, a] + w + A[b, j]}.

The reason this works is that either the new shortest path uses e or it doesn’t. If
it doesn’t, then A[i, j] should stay the same, and if it does then the shortest path
is the path from vi → va → vb → vj, which has cost A[i, a] + w + A[b, j]. So we
take the minimum of these two things.

12

Note that this is very similar to our Floyd-Warshall update rule, except that we
are adding a new edge, rather than a new vertex!
An alternative solution if you really want to match the Floyd-Warshall update
rule is to add a new node vn+1, along with edges (va, vn+1) and (vn+1, vb), each
with weight w/2, and then do the Floyd-Warshall update to add the vertex vn+1.
Note that we don’t have time to recompute A by running Floyd-Warshall from
scratch, since that would take time Θ(n3).

More parts on next page!

13

(d) (5 pt.) Suppose there are N students and N classes. Each student i has a set Si

of classes that they are interested in taking. Suppose that each student can take
at most 4 classes, and each class can seat at most 30 students. Given the lists Si,
in time at most O(N5), find a way to match students to classes, so that:

• No student is in more than 4 classes and no class has more than 30 students.
• No student is in a class they aren’t interested in.
• The assignment has as many student-class matches as possible.

SOLUTION: This is basically the same as the “matching ice cream to students”
application of Ford-Fulkerson that we saw in class. Use the Ford-Fulkerson algo-
rithm to find the maximum flow in the graph where:

• The vertex set consists of a source node s, a sink node t, one node per student
and one node per class.

• There is an edge from s to each student i, with capacity 4.
• There is an edge from each class j to t, with capacity 30.
• For each student i, there is an edge from i to each class in Si, with capacity
1.

Then if the maximum flow has one unit of flow from student i to class j, assign
student i to class j.
The running time, if we use the O(nm2) running time for Edmonds-Karp that
we discussed in class, is O(N5), since n = O(N) and m = O(N2). In fact,
since the max flow itself is at most N , Ford-Fulkerson will run a bit faster (time
O(m · flow) = O(N3)), but you didn’t need to say that for this problem.

(e) (3 BONUS pt.) Let G = (V,E) be a directed unweighted graph. We say that
G is “kind-of-connected” if for every u, v ∈ G, either there is a path from u to
v, or there is a path from v to u (or possibly both). Given an algorithm that
determines whether or not G is kind-of-connected, in time O(n+m).

14

SOLUTION: First, run Kosaraju’s algorithm to find the SCC DAG, call it G′.
Topologically sort G′ (in time O(n+m)), and suppose that the ordering of SCCs
is C1, C2, . . . , Cr. Then do:

• For i = 1, . . . , r − 1:
If there is not an edge from Ci to Ci+1 in G′, return False.

• Return True

Explanation (not required for credit): To see why this works, suppose that the
algorithm returns True. We claim that for any u, v, either u can reach v or v
can reach u. Indeed, suppose without loss of generality that u appears before v
in the topological sorting: say that u ∈ Ci, and v ∈ Cj for some j > i. (Note
that if they are in the same SCC, then they can both reach each other). Then,
because the algorithm returned True, there is a path from u to v that goes through
Ci, Ci+1, . . . , Cj.
On the other hand, suppose that the algorithm returns False. We claim that
there is some u, v so that neither can reach each other. Indeed, since the algorithm
returned False, there is some i so that Ci is not connected to Ci+1. Let u ∈ Ci

and let v ∈ Ci+1. Then there is no way to get from v to u, since Ci+1 appears
later in the topological ordering that Ci, so there can’t be any edges from v’s SCC
going “backwards” towards u’s SCC. Also, there is no way to get from u to v, since
there’s no way to get from Ci to Ci+1: all of the edges leaving Ci must “skip” Ci+1

and go on to a larger-indexed SCC, from which we then can’t get back to Ci+1.

15

4. (25 pt.) [Greedy Algorithms!]

There are n final exams today at Stanford; exam i is scheduled to begin at time ai
and end at time bi. Two exams which overlap cannot be administered in the same
classroom; two exams i and j are defined to be overlapping if [ai, bi] ∩ [aj, bj] ̸= ∅
(including if bi = aj, so one starts exactly at the time that the other ends). Consider
the following problem.

Input: Arrays A and B of length n so that A[i] = ai and B[i] = bi.

Output: The smallest number of classrooms necessary to schedule all of the exams,
and an optimal assignment of exams to classrooms.

For example: Suppose there are three exams, with start and finish times as given below:

i 1 2 3
ai 12pm 4pm 2pm
bi 3pm 6pm 5pm

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room
1 and Exam 3 can be scheduled in Room 2.

(a) (10 pt.) Design a greedy algorithm that solves the following problem. Your
algorithm should run in time O(n log(n) + nk), where k is the minimum number
of classrooms needed.
[We are expecting: Pseudocode AND a short English description, as well as
a short justification of the running time. You do not need to prove that your
algorithm is correct (yet).]

SOLUTION: Our greedy algorithm will first sort the exams by start time. Then
it will go through and assign each exam to a room where it will fit. If there is no
such room, then the algorithm starts a new room:

def scheduleExams(A, B):
n = len(A)
Sort the exams by start time
assume that now we have inputs
A and B so that A is sorted.
Rooms = []
For i = 0, ..., n-1:

foundARoom = False
For r in Rooms:

if r[-1][1] < A[i]: # if the last exam in
room r ends before

16

exam i starts
schedule exam i in room r
r.append([A[i], B[i]])
foundARoom = True
break

If not foundARoom:
schedule this exam in a new room.
Rooms.append([[A[i], B[i]]])

return Rooms

The time this algorithm takes is the time to sort the items (O(n log n)), plus
the time to do two for-loops, one through the activities and one through all the
rooms, so that’s another O(nk). Thus the total running time is O(n log n + nk),
as desired.

More space on next page!

17

More space for your greedy algorithm!

Another part on next page!

18

(b) (15 pt.) Prove formally that your greedy algorithm from part (a) is correct.
[We are expecting: A formal proof. If you do a proof by induction, be sure to
clearly state your inductive hypothesis, base case, inductive step, and conclusion.]

SOLUTION: We follow the recipe that we saw from class: do a proof by
induction to show that our greedy choices won’t rule out success.

• Inductive Hypothesis. After we have assigned the t’th exam to a room,
there is still an optimal solution that is consistent with the choices our algo-
rithm has made so far.

• Base case. When we haven’t made any assignments yet, any optimal solution
is consistent with our choices so far! This establishes the IH for t = 0.

• Inductive step. Suppose that the IH holds for t− 1; we want to show it for
t. Suppose that there is an optimal solution, call it T ∗, that uses k rooms,
and that extends the first t − 1 choices we have made so far. (Such a T ∗

exists by induction). Suppose that our t’th greedy assignment puts the exam
[a, b] into room r. If [a, b] is scheduled in room r in T ∗, then we are done, so
suppose that it is not, and that T ∗ instead assigns [a, b] to a room r′.
At this point the clearest way to finish this step is by picture:
Tlooks like: &the

last exam in this room stops BEFORE a, since greedy would haveI

Roomr: i : . i =
put(a,by there.

Roomisexamt:Iii i

1 I
a b
i

!

Consider swapping everything AFER a btun rooms - and r
b

:
#

Room::examt: I ii :

RoomriiI . i : .

A
a

Now this is a legit schedule (no overlapping exams) thathas Examt in room r
Italso agrees w/ the greedy aly's choice of Exams1, ..., t-1 since T* did, and

we didn'tmove any exams thatstartedbefore
time a

A

ND, ithas thesame itof rooms. So itis still optimal ifT* was optimal.

Hooray.
If we wanted to write all that out formally in words, we’d do the following,
but the picture/explanation above would be enough for full credit (and would
probably be preferred since it is clearer).

19

Suppose that in T ∗, the schedule for room r looks like:

[x1, y1], [x2, y2], . . . , [xℓ, yℓ]

and suppose that [xp, yp], for some p ≤ ℓ, is the first exam that starts after
time a. That is, we have

xp−1 ≤ a < xp.

Suppose that in T ∗, the schedule for room r′ looks like:

[w1, z1], [w2, z2], . . . , [wg, zg],

and suppose that [a, b] = [wq, zq] for some q ≤ g. Now consider the schedule
T that we get when we keep all of the rooms other than r, r′ the same, and
swap everything between rooms r and r′ after time a. That is, in T , room r
will now look like:

[x1, y1], . . . , [xp−1, yp−1], [a, b], [wq+1, zq+1], . . . , [wg, zg]

and the room r′ will now look like:

[w1, z1], . . . , [wq−1, zq−1], [xp, yp], . . . , [xℓ, yℓ]

. We need to argue that both of these are legitimate schedules, with no
overlapping exams. The only concerns are that a ≤ yp−1, or that xp ≤ zq−1,
so we need to show that neither of those occur.
To see that a > yp−1, notice that our greedy algorithm would have put [a, b]
in room r, which already contained [xp−1, yp−1], and thus a > yp−1. Notice
that we are using the assumption (from the IH) that T ∗ is consistent with the
greedy choices we’ve made so far; since xp−1 ≤ a and our greedy algorithm
sorts the exams by start time, we must have placed [xp−1, yp−1] already, and
thus it appears in room r in both T ∗ and in what our greedy algorithm did.
To see that xp > zq−1, notice that T ∗ assigned [a, b] to room r′ after
[wq−1, zq−1], which in particular means that a > zq−1. But we chose p so
that xp > a, and we conclude that xp > zq−1.
Therefore T is a legitimate exam schedule, and it uses the same number of
rooms as T ∗. Since T ∗ was optimal, so is T . Finally, we observe that T is
still consistent with the first t− 1 greedy choices as well as the t’th, since T ∗

was consistent with those choices, and we didn’t move any exams that started
before time a.
Thus, there is an optimal exam schedule extending our first t greedy choices,
and this establishes the IH for t.

• Conclusion. At the end of the algorithm, we have greedily scheduled all of
the exams, and the IH tells us that there is an optimal solution extending
our choices so far. The only assignment extending what we have so far is our
final assignment itself, so we conclude that our assignment is optimal.

20

5. (20 pt.) [Dynamic Programming!] Suppose you have n coins with distinct integer
values c0, c1, . . . , cn−1, so that ci > 0 for all i. In this problem you will design a
dynamic programming algorithm which takes as input the values c0, . . . , cn−1, and
an integer k ≥ 0, and outputs the number of ways to divide the coins into two piles so
that both piles have total value at least k. Your algorithm should run in time O(nk2).

For example, if n = 4 and k = 4, and the four coins have values c0 = 1, c1 = 2, c3 = 4, c4 = 5,
then the algorithm should output 8, since there are eight ways to split up the coins in to two
piles, where each pile has total value at least 4: {1, 2, 4} and {5}; {1, 2, 5} and {4}; {1, 4} and
{2, 5}; {1, 5} and {2, 4}; and then the same things again but swapping the piles.

(a) (10 pt.) What are the sub-problems you will use? What is the recursive rela-
tionship between the sub-problems, and what base cases do they satisfy?
[We are expecting: A clear definition of your sub-problems, the recursive rela-
tionship that they satisfy, and a complete set of base cases. You should also give
a clear explanation of why your recursive relationship and base cases hold.]

SOLUTION: Note: Originally we posted a solution file with a solution to a
different (but related) problem, where we were counting the number of ways to
divide the coins into two piles with value exactly k, rather than at least k. Sorry
if this caused any confusion!
Our subproblems will be K[j, k1, k2] for j = {0, . . . , n} and k1, k2 ∈ {0, 1, . . . , k},
which we define to be the number of ways to divide coins c1, . . . , cj into two piles
so that the first one has value at least k1, and the other has value at least k2. (If
j = 0, this is the number of ways to divide the empty set of coins).
The base cases are:

K[0, k1, k2] = 0 ∀k1, k2 so that k1 + k2 > 0

and
K[0, 0, 0] = 1.

The first base case is because there is no way to divide up the empty set into two
piles so that the total value is positive. The second is because there’s exactly one
way to divide up the empty set into two piles so that each has at least zero value,
namely that each pile is the empty set.
We also have the base cases

K[j, 0, 0] = 2j,

because any way to distribute the j coins among two piles will result in value at
least 0, and there are 2j such ways.
In order to find the recursive relationship, we consider two cases for how we can
count the ways counted by K[j, k1, k2].

21

• Case 1: Coin cj is in the first pile. The number of ways to do this is K[j −
1, k1 − cj, k2].

• Case 2: Coin cj is in the second pile. The number of ways to do this is
K[j − 1, k1, k2 − cj].

Since each piling counted by K[j, k1, k2] lands in one of the above cases, we have

K[j, k1, k2] = K[j − 1, k1 − cj, k2] +K[j − 1, k1, k2 − cj],

with the convention that negative indexes should be treated as zero.

Another part on next page.

22

(b) (5 pt.) Write pseudocode for your algorithm.
[We are expecting: Just pseudocode. You do not need to explain what it is doing
or why it works, but it should use the sub-problems you defined in the previous
part.]

SOLUTION:

C is an array so that C[i] = c_i
def countWays(C, k):

Initialize an (n+1)-by-(k+1)-by-(k+1) array K
For k_1 = 0, ..., k:

For k_2 = 0, ..., k:
K[0,k_1, k_2] = 0

for j = 0,...,n:
K[j,0,0] = 2^j

For j = 1,, n:
For k_1 = 0,, k:

For k_2 = 0,, k:
K[j,k_1, k_2] = 0
K[j,k_1, k_2] += K[j-1, max(0, k_1 - C[j-1]), k_2]
K[j,k_1, k_2] += K[j-1, k_1 , max(0, k_2 - C[j-1])]

Return K[n, k, k]

(c) (5 pt.) Now suppose that the coin values and the value k are not necessarily
integers (but are still positive). Would your algorithm from part (b) still return
the correct answer? If not, how would you fix it so that it would return the correct
answer? Would the running time still be O(nk2)?
[We are expecting: The following things:

• Whether your algorithm from (b) would still work and an explanation.
• Pseudocode OR a high-level description of how to fix it if not.

23

• Whether or not the running time would still be O(nk2), and why or why not.

]

SOLUTION: Our algorithm would not work, since we store things in an array,
and do array accesses like K[j, k1, k2], and if k1 and k2 aren’t necessarily integers,
this wouldn’t work. One way to adapt our algorithm to still return the correct
answer would be to do a top-down approach, and use a data structure like a Red-
Black Tree (rather than an array) to keep track of the problems we’ve already
solved. That is, we’d implement it like:

Initialize a global data structure (say, a Red-Black Tree), K,
that can store items with keys like (j, k1, k2),
and values which represent the solution to the
subproblems K[j,k_1, k_2] described above.
K should support INSERT, and SEARCH.

def topDownCoins(C, k1, k2):
j = len(C)
k1 = max(k1, 0)
k2 = max(k2, 0)
If (j, k1, k2) is in K.keys():

return K[(j, k1, k2)]
if k1 == 0 and k2 == 0:

K[(j,k1,k2)] = 2^j
return 2^j

if j == 0:
K[(j,k1,k2)] = 0
return 0

K[(j,k1,k2)] = topDownCoins(C[:-1], k1 - C[-1], k2)
+ topDownCoins(C[:-1], k1, k2 - C[-1])

return K[(j, k1, k2)]

return topDownCoins(C, k, k)

However, the worst-case running time might now be really slow in terms of n.
Before, we knew that there were at most k + 1 possibilities for the arguments k1
and k2, because they were integers that were between 0 and k. However, now
there may be as many as 2n possibilities for each, if k −

∑
i∈S ci is different (and

between 0 and k) for each set S ⊆ {0, . . . , n− 1}. In this case, the sub-problems
wouldn’t have much overlap, and our DP approach would not be very effective.
Since there are 2Ω(n) such subsets S, that means that the running time of this
algorithm could be as much as 2Ω(n), even if k is small.

24

This is the end of the exam!

25

This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you want
extra work on this page to be graded, clearly label which question your extra work is for.

26

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,

clearly label which question your extra work is for.

27

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,

clearly label which question your extra work is for.

28

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,

clearly label which question your extra work is for.

29

