
CS161, Winter 2024 Page 1 of 22

CS161 Final Exam
Once you turn this page, your exam has officially started!

You have three (3) hours for this exam.
Instructions:

• This is a timed, closed-book exam.

• You must complete this exam within 180 minutes of opening it.

• You may use two two-sided sheets of notes that you have prepared yourself. You may not use
any other notes, books, or online resources. You may not collaborate with others.

• If you have a question about the exam: Try to figure out the answer the best you can, and
clearly indicate on your exam that you had a question, and what you assumed the answer was.

• You may cite any result we have seen in lecture without proof, unless otherwise stated.

• This exam is printed two-sided. There are blank pages at the end for extra work. Do NOT tear
off or unstaple the pages.

• Please write your name at the top of all pages.

Advice: If you get stuck on a problem, move on to the next one. Pay attention to how many points
each problem is worth. Read the problems carefully.

Honor code: The following is a statement of the Stanford University Honor Code.

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its
purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic
aid in any work that serves as a component of grading or evaluation, including assignments, examinations,
and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course
syllabi and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors
will also not take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors
alone set academic requirements, the Honor Code is a community undertaking that requires students and
instructors to work together to ensure conditions that support academic integrity

By signing your name below, you acknowledge that you have abided by the Stanford Honor Code while
taking this exam.

Signature:

Name:

SUNetID:

Name: Page 2 of 22

1 Multiple Choices (26 pt.)

For the following problems, fill in the circle(s) for the correct choice(s). No explanation is needed.

1.1 (6 pt.) Looking Back :)

Which of the following is true? Select all that apply.

A A divide and conquer algorithm can always use memoization to reduce runtime at the cost of
increased memory usage.

B A randomized algorithm’s expected runtime will always be faster than or equal to its worst-case
runtime.

C For a problem that can be solved using a greedy algorithm, making any choice other than those
of the algorithm leads to a non-optimal solution.

D A top-down dynamic programming (DP) algorithm is similar to a bottom-up DP algorithm,
except the bottom-up version stores the results of previously encountered sub-problems, while
the top-down version does not.

1.2 (6 pt.) Hashing

Let U be a finite set and n be a positive integer. Let S be the set of all functions with domain U and
range {0, 1, 2, · · · , n − 1}. Assume |U| is much much larger than n. Suppose that we want to make a
hash table with S as our hash family. Which of the following is true? Select all that apply.

A S is a universal hash family.

B When we choose a hash function H from S at random, there always exist two elements that
would be hashed into the same bucket by H.

C It takes O(|U|) bits to store a hash function in S.

D Assume that we need to hash n elements in total and looking up each hash value takes constant
time. In the hash table constructed using a random function from S, the operations Insert,
Delete, and Search would run in expected O(1) time.

1.3 (4 pt.) Climb Stairs

Consider the CLIMB-STAIRS (CS) problem: there are n stairs to climb. Return the number of ways
there are for a person standing at the bottom to climb to the top if they can climb either 1, 2, or 3
stairs at a time. What would be the recurrence relation for CS(n), assuming that n ≥ 3? Select the
single correct answer.

A CS(n) = CS(n − 1) + CS(n − 2) + CS(n − 3)

B CS(n) = max{CS(n − 1),CS(n − 2),CS(n − 3)}

C CS(n) = CS(n − 1) + CS(n − 2) + CS(n − 3) + 1

Name: Page 3 of 22

D CS(n) = max{CS(n − 1),CS(n − 2),CS(n − 3)}+ 1

1.4 (6 pt.) Negative Edge Weights

Which of the following graph algorithms can return the correct result on a graph with potentially
negative edge weights (but there are no negative cycles)? Assume that all four algorithms can take
weighted graphs as valid inputs. Select all that apply.

A DFS for finding all vertices that are connected to a vertex in an undirected graph

B Dijkstra’s algorithm for finding the shortest path from a vertex to all other vertices in a directed
graph

C Floyd-Warshall for finding All-Pairs Shortest Paths in a directed graph

D Kruskal’s algorithm for finding a Minimum Spanning Tree in an undirected graph

1.5 (4 pt.) Flows and Cuts

Consider a graph G = (V, E) with a capacity ce for every e ∈ E. Suppose there exists a flow from s to
t (not necessarily the maximum) of value 5. What do we know about the size of the minimum s-t
cut (denoted by |C|) in G? Choose the single correct answer.

A |C| ≤ 5 B |C| = 5 C |C| ≥ 5 D None of the above

Name: Page 4 of 22

2 Short Answer (30 pt.)

2.1 (6 pt.)

s

v1

v2

v3

v4

v5

t

4

2

2

2

1

5

2 20

7

7

2

Above you see a graph with edge capacities indicated next to each edge. Find a maximum flow in the
above graph from s to t. You may fill out the flow on every edge in the below picture.

[We are expecting: Fill in the graph below with a maximum flow.]

s

v1

v2

v3

v4

v5

t

Name: Page 5 of 22

2.2 (6 pt.)

Suppose we are given an undirected, weighted, and connected graph G with n vertices and m edges.
We wish to store the graph so that we can use Prim’s algorithm to return the minimum spanning
tree of the graph in the best possible asymptotic runtime (that is achievable by Prim’s algorithm
specifically). Do we want to use an adjacency list representation for our graph or an adjacency matrix
representation? Justify your choice.

[We are expecting: A choice of representation and a short explanation]

2.3 (6 pt.)

Suppose we have a directed graph with n vertices and m edges. You start at some specified vertex,
and each time cross an edge going out of the current vertex. Each edge has an integer dollar amount
attached, such that your earnings increase by that dollar amount if you traverse the edge (or decrease
if the dollar amount is negative). If you traverse an edge multiple times, your earnings increase by the
dollar amount multiple times. For example, in the graph below, if you start at A, then move to B,
then move back to A, then move back to B, then move to C, you will earn 5 + (−2) + 5 + 6 dollars.

A B

C

5

-2

6

You want to know whether your earnings are bounded (i.e., there is a path that earns the maximum
amount of money, beyond which you cannot earn more). More specifically, you want an algorithm
that can take in any graph and will return true if your earnings are bounded and false if there is the
potential to earn unlimited money. Explain an algorithm to do this in O(mn) time.

[We are expecting: An English description of your algorithm, likely referencing an algorithm from
class, and a brief explanation of why it works]

Name: Page 6 of 22

Name: Page 7 of 22

2.4 (6 pt.)

Suppose we have a directed acyclic graph with n vertices and m edges where each vertex has an
associated integer score. We also care, however, about a vertex’s descendantScore, which is the highest
score of the vertex itself or of any of its descendants (i.e., the vertices it has a path to). Explain how
to calculate the descendantScore of all the vertices in our graph in O(n +m) time.

[We are expecting: Pseudocode OR a brief English description of your algorithm. You do not need to
justify the runtime.]

2.5 (6 pt.)

Suppose for a given graph, we have access to a second graph representing the DAG of the strongly
connected components of the first graph. We also have access to a function getSCC, which takes
as input a vertex in the first graph and returns the vertex corresponding to its strongly connected
component in the second graph. The function runs in O(1) time. If there are b strongly connected
components, devise an O(b2) algorithm that takes as input vertices u, v in the original graph and
identifies whether there exists a path from u to v .

[We are expecting: Pseudocode OR a brief English description of your algorithm, as well as a brief
justification of runtime. You do not need to justify the runtime of any algorithms from the lecture.]

Name: Page 8 of 22

3 Greedy for Compensation (49 pt.)

3.1 (8 pt.)

Lucky recently discovered an opportunity in the psychology department, where students are paid to
participate in studies. There are n ongoing studies numbered from 1 to n, with no new studies starting.
Today is day 0, and each study i will end on day di ≥ 0. Lucky is limited to participating in each study
only once and has the flexibility to choose which day to participate, up to and including the study’s
end date. Each study requires only one day of participation, and Lucky can participate in only one
study per day.

Payouts can differ between studies. Study i pays out pi ≥ 0 dollars. Lucky’s goal is to maximize the
total payout. Lucky has devised the following greedy strategy: every day, Lucky participates in the
remaining study with the highest payout and adds that to his total. A pseudocode implementation of
this strategy is shown below.

Algorithm 1: Lucky’s algorithm
Input: A set of studies studies = {(pi , di) | 1 ≤ i ≤ n}, where pi is the payout and di is the end

day for study i .
Output : Lucky’s total payout.

payout← 0
day← 0
sortedStudies← studies sorted by decreasing order of payout
for (d, p) ∈ sortedStudies do

if day ≤ d then
day← day + 1
payout← payout+ p

return payout

Prove that Lucky’s strategy may not result in the maximum payout.

[We are expecting: A concise proof by counterexample which provides a list of (di , pi) pairs on which
the algorithm does not achieve maximum payout.]

Name: Page 9 of 22

3.2 (25 pt.)

Plucky suggests a fix to Lucky’s algorithm. Plucky’s strategy still processes studies in decreasing order
of payout but schedules each at the last available day possible rather than the first. A pseudocode
implementation of this strategy is shown below.

Algorithm 2: Plucky’s algorithm
Input: A set of studies studies = {(pi , di) | 1 ≤ i ≤ n}, where pi is the payout and di is the end

day for study i .
Output : Maximum payout from studies.

payout← 0
studySchedule← an array of length max{d1, . . . , dn}+ 1 with all entries set to “available”
sortedStudies← studies sorted by decreasing order of payout
for (d, p) ∈ sortedStudies do

for day = d, d − 1, . . . , 0 do
if studySchedule[day] = “available” then

studySchedule[day]← “booked”
payout← payout+ p
break // from the inner for loop

return payout

Prove that Plucky’s algorithm correctly returns the maximum payout Lucky can achieve.

[We are expecting: A formal proof of correctness.]

Name: Page 10 of 22

Extra space for problem 3.2. Questions continue on the next page . . .

Name: Page 11 of 22

3.3 (16 pt.)

Lucky has resolved to be a more ethical lemur. Lately, he’s been reading up on utilitarianism, and
decides that rather than pursuing only his own profit, he should instead participate in the studies that
are most valuable by utilitarian standards.

3.3.1 (4 pt.)

How would a utilitarian calculate the value of each study? Would Lucky’s personal payout (assuming
he participates) factor into the calculation? Why or why not?

[We are expecting: (1) a 1 sentence description, in general terms, of how a utilitarian calculates
value, and (2) a 1 sentence explanation of whether and why Lucky’s personal payout does or does not
factor into the calculation]

3.3.2 (4 pt.)

What changes would Lucky need to make to Plucky’s algorithm in order to return maximum utilitarian
value rather than maximum personal payout?

[We are expecting: 2-3 sentences describing the ways in which Plucky’s algorithm would need to
change to output maximum utilitarian value]

Name: Page 12 of 22

3.3.3 (4 pt.)

Why might it be difficult to actually do the kind of utilitarian calculation you described in 3.3.1? Please
support your answer by giving at least one specific example of something relevant to the utilitarian
calculation that could be difficult to measure.

[We are expecting: 2-3 sentences clearly describing a measurement-related barrier to doing the
utilitarian calculation, either focusing on or supported by a specific example of a difficult-to-measure
quantity that the calculation relies on]

Name: Page 13 of 22

3.3.4 (4 pt.)

Suppose that one of the studies violates the privacy rights of its participants, although the participants
never find out about this violation. Would this fact affect a utilitarian’s evaluation of the study
(assuming the utilitarian was aware of it)? Why or why not?

[We are expecting: 2-3 sentences explaining why this fact is or is not relevant to the utilitarian’s
evaluation]

Name: Page 14 of 22

4 Optimal Matrix Multiplication (35 pt.)

We consider the problem of deciding multiplication order for matrix multiplication. In particular, given
n matrices A0, A1, . . . , An−1, we want to decide in which order to multiply them, to take the least time.
For this problem, we assume the matrix dimensions are given as an (n + 1)-sized array d , where the
dimensions of the matrix Ai are d [i]× d [i + 1] for i ∈ {0, 1, . . . , n − 1}. Assume that it takes i · j · k
time to multiply two matrices of sizes i × j and j × k ; the resulting matrix is going to be of size i × k .

For example, for d = [1, 2, 3, 1], we have three matrices A0, A1, A2 with dimensions 1× 2, 2× 3, 3× 1,
respectively. There are two possible ways of multiplying these three matrices which can be shown as
((A0A1)A2) and (A0(A1A2)). In other words, we could multiply the first two matrices first and the
result with the third, or multiply the last two matrices first. It takes 9 time for the first way and 8 time
for the second way, so we prefer the second way.

4.1 (5 pt.)

Find the optimal time (and how to achieve this time) for multiplication in the following examples:

Example 1: d = [1, 10, 1, 10, 1] Example 2: d = [1, 10, 1, 10, 10, 1]

[We are expecting: Optimal time and order of multiplications for each of the examples (you can use
parentheses to indicate the order).]

4.2 (15 pt.)

Let us define M(i , j) as the optimal time to multiply the matrices between i and j (both inclusive), i.e.,
the optimal time to compute AiAi+1 · · ·Aj . Write a recursive relation for M(i , j).

[We are expecting: Recursive formulation and 2-3 sentences of justification.]

Name: Page 15 of 22

4.3 (15 pt.)

Write an algorithm, with a runtime of O(n3), to find the optimal time to multiply our n matrices.

[We are expecting: Pseudocode AND English description, justification for runtime, and proof of
correctness.]

Name: Page 16 of 22

5 Graph Mania! (40 pt.)

For each of the following algorithm design tasks, please provide the following:

• A clear English description of how you would do the task, and

• A justification for why your proposed algorithm meets runtime requirements.

In this problem, all graphs will have n vertices and m edges.

Please note the following:

• Pseudocode is not required, but please feel free to include it to make your algorithm clearer. It
is not necessary to provide a formal proof of correctness.

• Any result or algorithm seen in class is fair game to cite without justification.

• If you want to do a graph task using a graph algorithm from class, be very explicit about
which algorithm/procedure you are using, what task you want to accomplish, and what your
input/output is.

• All runtimes are worst-case, deterministic runtimes.

• Space is not constrained, but do not use prohibitively large amounts of space.

• It is not necessary, but if it helps, you may assume you can easily access any node’s neighbors in
constant time (in a directed graph, incoming and outgoing neighbors).

Name: Page 17 of 22

5.1 (10 pt.)

We define the diameter of a strongly connected directed graph G = (V, E) as the largest distance
between any two vertices in V . That is,

diameter(G) = max{distance(u, v) | u, v ∈ V }.

Recall that distance(u, v) is the cost of the shortest directed path from u to v .

Take G = (V, E) to be a weighted strongly connected directed graph. G may have negative edges, but
you are guaranteed that G contains no negative cycles. Design an algorithm that finds the diameter
of G in time O(n3).

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

Name: Page 18 of 22

5.2 (13 pt.)

Let G = (V, E) be a directed unweighted graph (i.e., every edge has weight 1). Among a set of vertices
S, we say v ∈ S is the closest to u if, among those vertices in S that are reachable from u, vertex v is
the one reachable via a path of the shortest total cost. Given two distinct vertices x, y ∈ V , design
an algorithm that finds the closest vertex to x that is also reachable by y . Your algorithm must
run in O(m) time.

Please note the following:

• It may be the case that the closest vertex to x reachable by y is actually x itself.

• You may assume that at least one vertex is reachable by both x and y .

• You may assume that m > 0.

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

Name: Page 19 of 22

5.3 (17 pt.)

Let G = (V, E) be a directed unweighted graph. We say G is “somewhat-connected” if for every pair
of vertices u, v ∈ V , either there is a directed path from u to v in G, there is a directed path from v
to u in G, or both.

Design an algorithm to determine if G is “somewhat-connected” in O(m + n) time.

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

This is the end!

Name: Page 20 of 22

Left intentionally blank as scratch paper or for extra space for any question. Please indicate in the
relevant problem if you have work here that you want graded, and label your work clearly.

Name: Page 21 of 22

Left intentionally blank as scratch paper or for extra space for any question. Please indicate in the
relevant problem if you have work here that you want graded, and label your work clearly.

Name: Page 22 of 22

Left intentionally blank as scratch paper or for extra space for any question. Please indicate in the
relevant problem if you have work here that you want graded, and label your work clearly.

