
CS161, Winter 2024 Page 1 of 17

CS161 Final Exam
Once you turn this page, your exam has officially started!

You have three (3) hours for this exam.
Instructions:

• This is a timed, closed-book exam.

• You must complete this exam within 180 minutes of opening it.

• You may use two two-sided sheets of notes that you have prepared yourself. You may not use
any other notes, books, or online resources. You may not collaborate with others.

• If you have a question about the exam: Try to figure out the answer the best you can, and
clearly indicate on your exam that you had a question, and what you assumed the answer was.

• You may cite any result we have seen in lecture without proof, unless otherwise stated.

• This exam is printed two-sided. There are blank pages at the end for extra work. Do NOT tear
off or unstaple the pages.

• Please write your name at the top of all pages.

Advice: If you get stuck on a problem, move on to the next one. Pay attention to how many points
each problem is worth. Read the problems carefully.

Honor code: The following is a statement of the Stanford University Honor Code.

The Honor Code is an undertaking of the Stanford academic community, individually and collectively. Its
purpose is to uphold a culture of academic honesty.

Students will support this culture of academic honesty by neither giving nor accepting unpermitted academic
aid in any work that serves as a component of grading or evaluation, including assignments, examinations,
and research.

Instructors will support this culture of academic honesty by providing clear guidance, both in their course
syllabi and in response to student questions, on what constitutes permitted and unpermitted aid. Instructors
will also not take unusual or unreasonable precautions to prevent academic dishonesty.

Students and instructors will also cultivate an environment conducive to academic integrity. While instructors
alone set academic requirements, the Honor Code is a community undertaking that requires students and
instructors to work together to ensure conditions that support academic integrity

By signing your name below, you acknowledge that you have abided by the Stanford Honor Code while
taking this exam.

Signature:

Name:

SUNetID:

Name: Page 2 of 17

1 Multiple Choices (26 pt.)

For the following problems, fill in the circle(s) for the correct choice(s). No explanation is needed.

1.1 (6 pt.) Looking Back :)

Which of the following is true? Select all that apply.

A A divide and conquer algorithm can always use memoization to reduce runtime at the cost of
increased memory usage.

B A randomized algorithm’s expected runtime will always be faster than or equal to its worst-case
runtime.

C For a problem that can be solved using a greedy algorithm, making any choice other than those
of the algorithm leads to a non-optimal solution.

D A top-down dynamic programming (DP) algorithm is similar to a bottom-up DP algorithm,
except the bottom-up version stores the results of previously encountered sub-problems, while
the top-down version does not.

SOLUTION:
B. (A) is false because the problem might not have overlapping sub-problems. (B) is true
because expected runtime considers the expectation of the outcomes in the random parts of
the algorithm, which would yield a runtime that lower-bounds the runtime when every random
outcome is the worst outcome. (C) is false– multiple optimal solutions could exist, but greedy
only finds one of them. (D) is false because all DP algorithms store the result of previous
sub-problems.

1.2 (6 pt.) Hashing

Let U be a finite set and n be a positive integer. Let S be the set of all functions with domain U and
range {0, 1, 2, · · · , n − 1}. Assume |U| is much much larger than n. Suppose that we want to make a
hash table with S as our hash family. Which of the following is true? Select all that apply.

A S is a universal hash family.

B When we choose a hash function H from S at random, there always exist two elements that
would be hashed into the same bucket by H.

C It takes O(|U|) bits to store a hash function in S.

D Assume that we need to hash n elements in total and looking up each hash value takes constant
time. In the hash table constructed using a random function from S, the operations Insert,
Delete, and Search would run in expected O(1) time.

SOLUTION:
ABD. (A) is true because S is the set of all hash functions from U to {0, 1, 2, · · · , n − 1}. (B)
is true because H’s domain is bigger than its range, so multiple elements will be mapped to

Name: Page 3 of 17

the same bucket; however, when we choose a hash function from S at random, the probability
of collision for any two elements is ≤ 1

n , which is what we need. (C) is false because it takes
Ω(|U| log n) bits to store a hash function in S. (D) is true, since S is universal.

1.3 (4 pt.) Climb Stairs

Consider the CLIMB-STAIRS (CS) problem: there are n stairs to climb. Return the number of ways
there are for a person standing at the bottom to climb to the top if they can climb either 1, 2, or 3
stairs at a time. What would be the recurrence relation for CS(n), assuming that n ≥ 3? Select the
single correct answer.

A CS(n) = CS(n − 1) + CS(n − 2) + CS(n − 3)

B CS(n) = max{CS(n − 1),CS(n − 2),CS(n − 3)}

C CS(n) = CS(n − 1) + CS(n − 2) + CS(n − 3) + 1

D CS(n) = max{CS(n − 1),CS(n − 2),CS(n − 3)}+ 1

SOLUTION:
A. # ways to stair n = # ways to stair n-1 (then take 1 step to stair n) + # ways to stair n-2
(then take 2 steps to stair n) + # ways to stair n-3 (then take 3 steps to stair n).

1.4 (6 pt.) Negative Edge Weights

Which of the following graph algorithms can return the correct result on a graph with potentially
negative edge weights (but there are no negative cycles)? Assume that all four algorithms can take
weighted graphs as valid inputs. Select all that apply.

A DFS for finding all vertices that are connected to a vertex in an undirected graph

B Dijkstra’s algorithm for finding the shortest path from a vertex to all other vertices in a directed
graph

C Floyd-Warshall for finding All-Pairs Shortest Paths in a directed graph

D Kruskal’s algorithm for finding a Minimum Spanning Tree in an undirected graph

SOLUTION:
ACD. (A) is true because DFS does not take edge weights into account, but it does not need
to do so to find a connected component. (B) is false–Dijkstra needs to be certain that the path
weights from the source to the vertices it has marked as "sure" will not decrease in the future.
(C) is true because FW will consider all edges, and update the weight of the paths with negative
edges accordingly. (D) is true because Kruskal selects the edge weights in ascending order, no
matter if they are negative.

Name: Page 4 of 17

1.5 (4 pt.) Flows and Cuts

Consider a graph G = (V, E) with a capacity ce for every e ∈ E. Suppose there exists a flow from s to
t (not necessarily the maximum) of value 5. What do we know about the size of the minimum s-t
cut (denoted by |C|) in G? Choose the single correct answer.

A |C| ≤ 5 B |C| = 5 C |C| ≥ 5 D None of the above

SOLUTION:
C. The size of any cut ≥ of the value of any flow.

Name: Page 5 of 17

2 Short Answer (30 pt.)

2.1 (6 pt.)

s

v1

v2

v3

v4

v5

t

4

2

2

2

1

5

2 20

7

7

2

Above you see a graph with edge capacities indicated next to each edge. Find a maximum flow in the
above graph from s to t. You may fill out the flow on every edge in the below picture.

[We are expecting: Fill in the graph below with a maximum flow.]

s

v1

v2

v3

v4

v5

t

SOLUTION:
Here is one example. Any valid flow with value 7 is correct.

s

v1

v2

v3

v4

v5

t

4

2

1

1

1

5

0 5

0

0

2

Name: Page 6 of 17

2.2 (6 pt.)

Suppose we are given an undirected, weighted, and connected graph G with n vertices and m edges.
We wish to store the graph so that we can use Prim’s algorithm to return the minimum spanning
tree of the graph in the best possible asymptotic runtime (that is achievable by Prim’s algorithm
specifically). Do we want to use an adjacency list representation for our graph or an adjacency matrix
representation? Justify your choice.

[We are expecting: A choice of representation and a short explanation]

SOLUTION:
We would want to use an adjacency list representation. The minimum spanning tree algorithm
requires us to add every vertex to our tree and then iterate over its neighbors. Using an adjacency
matrix would require us to iterate through the whole row/column associated with a vertex to
find its neighbors, resulting in an Ω(n2) runtime. On the other hand, an adjacency list would
allow us to iterate just through the neighbors of each vertex and achieve the O(n log n +m)
runtime. Since m = O(n2) is not a tight bound, this can be a strictly better runtime than Ω(n2).

2.3 (6 pt.)

Suppose we have a directed graph with n vertices and m edges. You start at some specified vertex,
and each time cross an edge going out of the current vertex. Each edge has an integer dollar amount
attached, such that your earnings increase by that dollar amount if you traverse the edge (or decrease
if the dollar amount is negative). If you traverse an edge multiple times, your earnings increase by the
dollar amount multiple times. For example, in the graph below, if you start at A, then move to B,
then move back to A, then move back to B, then move to C, you will earn 5 + (−2) + 5 + 6 dollars.

A B

C

5

-2

6

You want to know whether your earnings are bounded (i.e., there is a path that earns the maximum
amount of money, beyond which you cannot earn more). More specifically, you want an algorithm
that can take in any graph and will return true if your earnings are bounded and false if there is the
potential to earn unlimited money. Explain an algorithm to do this in O(mn) time.

[We are expecting: An English description of your algorithm, likely referencing an algorithm from
class, and a brief explanation of why it works]

SOLUTION:
You can run Bellman-Ford on a version of the graph where all the edge weights have been
multiplied by -1. Then Bellman-Ford will determine whether there are negative cycles, which
would translate to positive cycles in the original graph, which would give you unbounded rewards.

Name: Page 7 of 17

2.4 (6 pt.)

Suppose we have a directed acyclic graph with n vertices and m edges where each vertex has an
associated integer score. We also care, however, about a vertex’s descendantScore, which is the highest
score of the vertex itself or of any of its descendants (i.e., the vertices it has a path to). Explain how
to calculate the descendantScore of all the vertices in our graph in O(n +m) time.

[We are expecting: Pseudocode OR a brief English description of your algorithm. You do not need to
justify the runtime.]

SOLUTION:
There are a couple of similar ways to do this, but the simplest is through top-down dynamic
programming. We can iterate through the vertices, keeping track of the scores for vertices that
we have already calculated. When we encounter a vertex whose score we haven’t calculated, we
calculate it as the maximum of its own score and the descendantScores of its children, recursing
as necessary to calculate the children’s descendantScore.
It can also be implemented through a bottom-up dynamic programming search where we first
calculate a topological sort on the graph and then iterate over the vertices in the reverse order.
We can also implement it through a modification of DFS, where we store the descendantScore
at each node we encounter, and then calculate the descendantScore of a new vertex in terms of
the descendantScores of its children.

2.5 (6 pt.)

Suppose for a given graph, we have access to a second graph representing the DAG of the strongly
connected components of the first graph. We also have access to a function getSCC, which takes
as input a vertex in the first graph and returns the vertex corresponding to its strongly connected
component in the second graph. The function runs in O(1) time. If there are b strongly connected
components, devise an O(b2) algorithm that takes as input vertices u, v in the original graph and
identifies whether there exists a path from u to v .

[We are expecting: Pseudocode OR a brief English description of your algorithm, as well as a brief
justification of runtime. You do not need to justify the runtime of any algorithms from the lecture.]

SOLUTION:
We first access the strongly connected components of the two vertices. We can then run DFS
or BFS from the strongly connected component of the first vertex and see if we reach the
strongly connected component of the second vertex. This will run in O(|V |+ |E|) on the second
graph, where |V | = b and |E| = O(b2).

Name: Page 8 of 17

3 Greedy for Compensation (49 pt.)

3.1 (8 pt.)

Lucky recently discovered an opportunity in the psychology department, where students are paid to
participate in studies. There are n ongoing studies numbered from 1 to n, with no new studies starting.
Today is day 0, and each study i will end on day di ≥ 0. Lucky is limited to participating in each study
only once and has the flexibility to choose which day to participate, up to and including the study’s
end date. Each study requires only one day of participation, and Lucky can participate in only one
study per day.

Payouts can differ between studies. Study i pays out pi ≥ 0 dollars. Lucky’s goal is to maximize the
total payout. Lucky has devised the following greedy strategy: every day, Lucky participates in the
remaining study with the highest payout and adds that to his total. A pseudocode implementation of
this strategy is shown below.

Algorithm 1: Lucky’s algorithm
Input: A set of studies studies = {(pi , di) | 1 ≤ i ≤ n}, where pi is the payout and di is the end

day for study i .
Output : Lucky’s total payout.

payout← 0
day← 0
sortedStudies← studies sorted by decreasing order of payout
for (d, p) ∈ sortedStudies do

if day ≤ d then
day← day + 1
payout← payout+ p

return payout

Prove that Lucky’s strategy may not result in the maximum payout.

[We are expecting: A concise proof by counterexample which provides a list of (di , pi) pairs on which
the algorithm does not achieve maximum payout.]

SOLUTION:
As a counterexample, let (d1, p1) = (1, 2) and (d2, p2) = (0, 1). Lucky would participate in
study 1 on day 0 and then be unable to participate in a study on day 1, leading to a total payout
of 2. A higher payout of 3 is achievable by participating in study 2 on day 0 and study 1 on day
1.

3.2 (25 pt.)

Plucky suggests a fix to Lucky’s algorithm. Plucky’s strategy still processes studies in decreasing order
of payout but schedules each at the last available day possible rather than the first. A pseudocode
implementation of this strategy is shown below.

Name: Page 9 of 17

Algorithm 2: Plucky’s algorithm
Input: A set of studies studies = {(pi , di) | 1 ≤ i ≤ n}, where pi is the payout and di is the end

day for study i .
Output : Maximum payout from studies.

payout← 0
studySchedule← an array of length max{d1, . . . , dn}+ 1 with all entries set to “available”
sortedStudies← studies sorted by decreasing order of payout
for (d, p) ∈ sortedStudies do

for day = d, d − 1, . . . , 0 do
if studySchedule[day] = “available” then

studySchedule[day]← “booked”
payout← payout+ p
break // from the inner for loop

return payout

Prove that Plucky’s algorithm correctly returns the maximum payout Lucky can achieve.

[We are expecting: A formal proof of correctness.]

SOLUTION:
Suppose for contradiction that Plucky’s algorithm fails to return the maximum payout. Then
the schedule created by Plucky is suboptimal. Let S be the schedule created by Plucky and S⋆

be an optimal schedule which is consistent with S for the longest possible prefix of studies in
sortedStudies. Let study i be the first study in sortedStudies at which S and S⋆ differ. One
of the following three cases must occur.

• S includes study i but S⋆ does not. Consider the day at which study i is scheduled
in S. Either S⋆ does not have study for this day, in which case it can be improved by
adding study i , or it has a different study j which appears later in sortedStudies and can
be replaced by i without reducing the total payout. In either case, there is a contradiction.

• S⋆ includes study i but S does not. Because S and S⋆ are consistent up to processing
study i , Plucky would have found an available day for study i and scheduled it in S, giving
a contradiction.

• S⋆ assigns study i to a different day than S. Plucky’s algorithm would assigns study i
to the latest available day D, so S⋆ must have study i assigned to an earlier day D′ < D.
The study (if one exists) at day D in S⋆ can swap places with study i . Study i would still
be completed before its end date and the other study would only be moved forward, so
the new schedule would be valid. This would create a new optimal strategy consistent
with S through study i , a contradiction.

All cases lead to contradiction, so we conclude Plucky’s algorithm must return the maximum
payout.
Common Errors: Note that in any inductive proof it is important to prove the inductive
hypothesis exactly for the next iteration in the inductive step. We illustrate a common proof
idea that would fail for this question because of this reason:
Inductive Hypothesis: The algorithm works well for k total studies. Base Case: The algorithm
trivially works when there are 0 studies. Inductive Step: Say we have k + 1 studies. We

Name: Page 10 of 17

schedule the study with the highest payout on a particular day. We can now use IH to prove
optimality of the remaining k studies.
Note the above proof seems to work for 3.1 as well, even though we just proved that 3.1 is
sub-optimal! The discrepancy comes from the following: the IH implicitly assumes that we have
all the days available to book as we want. However, after booking the highest payout study
in the IS, we don’t have all the days left. By being imprecise in our IH, we ignore the implicit
assumption and end up with an incorrect proof.
While different phrasings of the proof would have different loopholes, in general proofs by
induction on the number of days left to schedule or the number of total studies, etc. would
likely not work.
As a sanity check, you can always check if your proof, or a slightly modified version of it would
work for 3.1. If it does, then the proof is obviously wrong.

3.3 (16 pt.)

Lucky has resolved to be a more ethical lemur. Lately, he’s been reading up on utilitarianism, and
decides that rather than pursuing only his own profit, he should instead participate in the studies that
are most valuable by utilitarian standards.

3.3.1 (4 pt.)

How would a utilitarian calculate the value of each study? Would Lucky’s personal payout (assuming
he participates) factor into the calculation? Why or why not?

[We are expecting: (1) a 1 sentence description, in general terms, of how a utilitarian calculates
value, and (2) a 1 sentence explanation of whether and why Lucky’s personal payout does or does not
factor into the calculation]

SOLUTION:
“A utilitarian would calculate the value of each study by adding up the happiness that that study
would produce for everyone affected by it. Since Lucky is one of the people affected by the
study, his personal payout would factor into the calculation as a consequence of the study that
makes him happy.” Students do not need to emphasize this, but of course, Lucky’s personal
payout is only one factor among many in the calculation.

3.3.2 (4 pt.)

What changes would Lucky need to make to Plucky’s algorithm in order to return maximum utilitarian
value rather than maximum personal payout?

[We are expecting: 2-3 sentences describing the ways in which Plucky’s algorithm would need to
change to output maximum utilitarian value]

SOLUTION:
“In the input set of studies, the p variables would have to be values of the total overall happiness
produced by the study, rather than Lucky’s personal payout from the study. Then the sort(studies)

Name: Page 11 of 17

method would have to sort the studies by these new p variables, so that the studies end up
sorted by decreasing order of utilitarian value”

3.3.3 (4 pt.)

Why might it be difficult to actually do the kind of utilitarian calculation you described in 3.3.1? Please
support your answer by giving at least one specific example of something relevant to the utilitarian
calculation that could be difficult to measure.

[We are expecting: 2-3 sentences clearly describing a measurement-related barrier to doing the
utilitarian calculation, either focusing on or supported by a specific example of a difficult-to-measure
quantity that the calculation relies on]

SOLUTION:
There is more room for variability in correct answers here, as there are a number of measurement-
related barriers to actually doing this kind of utilitarian calculation. There is the general problem
that it is not clear how to measure happiness, especially in a way that allows for comparison
across individuals. Students who go for this option should ideally make it more specific by at
least naming a person or group of people whose happiness would be relevant but difficult to
measure. So they might write, e.g., “It might be difficult to do the utilitarian calculation because
it’s not clear how to measure happiness. For example, how much happiness do Lucky or the
other participants get from their payouts, and how does that compare to how much happiness
future psychologists or their patients will derive from the study’s useful findings?” Students
might also point to the difficulty in measuring how much happiness the study will generate for
future people, given that its results are at present uncertain. Again, students should ideally make
this a bit more specific. So they might write, e.g., “It might be difficult to do the utilitarian
calculation because much of the potential happiness generated by psychological studies depends
on how useful their results will be, which is hard to know in advance. A study into a new method
of treating depression, for instance, might generate enormous amounts of happiness for future
people, but only if the study turns out to be successful.” Enterprising students might point out
even more remote consequences of a study, which matter to the utilitarian’s calculation but are
difficult to anticipate. For instance, if Lucky turns his small payout into millions by using it as
an early-stage investment in the next Google or Apple, and then uses his millions to feed the
hungry, then the happiness the study will produce by way of Lucky’s payout alone is enormous,
but this is something that is hard to measure in advance. Students might give other answers
as well. Full credit should be given to any good-faith effort that discusses anything that could
reasonably be considered a measurement-related barrier to adding up the happiness of everyone
affected by a study.

3.3.4 (4 pt.)

Suppose that one of the studies violates the privacy rights of its participants, although the participants
never find out about this violation. Would this fact affect a utilitarian’s evaluation of the study
(assuming the utilitarian was aware of it)? Why or why not?

[We are expecting: 2-3 sentences explaining why this fact is or is not relevant to the utilitarian’s
evaluation]

Name: Page 12 of 17

SOLUTION:
Here too a number of answers are acceptable. The most straightforward answer would look
something like this: “If the participants in the study never find out about the violation of their
privacy, then the violation won’t affect their happiness. The violation would therefore make no
difference to the utilitarian’s evaluation of the study, since the utilitarian’s evaluation depends
only on the study’s effects on happiness.” But enterprising students could reasonably reach the
opposite conclusion, for example, by arguing that a person’s “true” happiness or well-being could
be set back even by violations of their privacy that they’re unaware of. Or they might argue
that researchers who get away with conducting a privacy-violating study might be more likely to
violate privacy again in the future in ways that would have a detrimental effect on the happiness
of future study participants. Again, good-faith efforts should be rewarded; the main thing is that
students recognize that privacy violation can only be relevant to the utilitarian calculation if it
has an effect on someone’s happiness. It’s possible that a student might give an answer like this:
“If the utilitarian is also a deontologist, the privacy violation might affect their evaluation even if
no one is aware of it.” Strictly speaking, you can’t be both a utilitarian and a deontologist, but
since this point was not emphasized in the lecture, an answer like this should be given full credit
(but only if the student is explicitly considering a utilitarian who is also a deontologist. If they
just say what a deontologist would say, they’re not answering the question!)

Name: Page 13 of 17

4 Optimal Matrix Multiplication (35 pt.)

We consider the problem of deciding multiplication order for matrix multiplication. In particular, given
n matrices A0, A1, . . . , An−1, we want to decide in which order to multiply them, to take the least time.
For this problem, we assume the matrix dimensions are given as an (n + 1)-sized array d , where the
dimensions of the matrix Ai are d [i]× d [i + 1] for i ∈ {0, 1, . . . , n − 1}. Assume that it takes i · j · k
time to multiply two matrices of sizes i × j and j × k ; the resulting matrix is going to be of size i × k .

For example, for d = [1, 2, 3, 1], we have three matrices A0, A1, A2 with dimensions 1× 2, 2× 3, 3× 1,
respectively. There are two possible ways of multiplying these three matrices which can be shown as
((A0A1)A2) and (A0(A1A2)). In other words, we could multiply the first two matrices first and the
result with the third, or multiply the last two matrices first. It takes 9 time for the first way and 8 time
for the second way, so we prefer the second way.

4.1 (5 pt.)

Find the optimal time (and how to achieve this time) for multiplication in the following examples:

Example 1: d = [1, 10, 1, 10, 1] Example 2: d = [1, 10, 1, 10, 10, 1]

[We are expecting: Optimal time and order of multiplications for each of the examples (you can use
parentheses to indicate the order).]

SOLUTION:
1. 21. We use the following way to multiply matrices: ((A0A1)(A2A3)).
2. 121. We use the following way to multiply matrices: ((A0A1)(A2(A3A4))).

4.2 (15 pt.)

Let us define M(i , j) as the optimal time to multiply the matrices between i and j (both inclusive), i.e.,
the optimal time to compute AiAi+1 · · ·Aj . Write a recursive relation for M(i , j).

[We are expecting: Recursive formulation and 2-3 sentences of justification.]

SOLUTION:
We take various cases of where we could insert the first break. That is, for each k between i
and j − 1, we consider multiplying everything between i and k and everything between k +1 and
j before multiplying the results with each other. This gives us the following recurrence relation.
M(i , j) = min{M(i , k) +M(k + 1, j) + d [i] · d [k + 1] · d [j + 1] | i ≤ k < j}

4.3 (15 pt.)

Write an algorithm, with a runtime of O(n3), to find the optimal time to multiply our n matrices.

[We are expecting: Pseudocode AND English description, justification for runtime, and proof of
correctness.]

Name: Page 14 of 17

SOLUTION:

/* We use memoization and initialize an n × n array M of NULL values to
store the results */

function getOptMult(i , j):
if i = j then

return 0
if M[i , j] ̸= NULL then

return M[i , j]
M[i , j]←∞
for k ∈ {i , . . . , j − 1} do
M[i , j]← min{M[i , j], getOptMult(i , k)+getOptMult(k+1, j)+d [i]d [k+1]d [j+1]}

return M[i , j]
/* We call getOptMult(0, n − 1) to find the optimal answer */

We use a DP approach and create a 2D array corresponding to M(i , j). We can use a top-down
recursive formulation to solve for M(0, n − 1) using the above recurrence relation.
For time complexity analysis, note that we need to fill in the entire n2 length array and each
entry (i , j) will make j − i ≤ O(n) recursive calls.

Name: Page 15 of 17

5 Graph Mania! (40 pt.)

For each of the following algorithm design tasks, please provide the following:

• A clear English description of how you would do the task, and

• A justification for why your proposed algorithm meets runtime requirements.

In this problem, all graphs will have n vertices and m edges.

Please note the following:

• Pseudocode is not required, but please feel free to include it to make your algorithm clearer. It
is not necessary to provide a formal proof of correctness.

• Any result or algorithm seen in class is fair game to cite without justification.

• If you want to do a graph task using a graph algorithm from class, be very explicit about
which algorithm/procedure you are using, what task you want to accomplish, and what your
input/output is.

• All runtimes are worst-case, deterministic runtimes.

• Space is not constrained, but do not use prohibitively large amounts of space.

• It is not necessary, but if it helps, you may assume you can easily access any node’s neighbors in
constant time (in a directed graph, incoming and outgoing neighbors).

5.1 (10 pt.)

We define the diameter of a strongly connected directed graph G = (V, E) as the largest distance
between any two vertices in V . That is,

diameter(G) = max{distance(u, v) | u, v ∈ V }.

Recall that distance(u, v) is the cost of the shortest directed path from u to v .

Take G = (V, E) to be a weighted strongly connected directed graph. G may have negative edges, but
you are guaranteed that G contains no negative cycles. Design an algorithm that finds the diameter
of G in time O(n3).

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

SOLUTION:
• Run Floyd-Warshall on G to retrieve the shortest paths between all pairs in the graph.

This takes O(n3) time.
• Take one pass over the pairs to find the maximum distance between a pair. This takes
O(n2) time.

5.2 (13 pt.)

Let G = (V, E) be a directed unweighted graph (i.e., every edge has weight 1). Among a set of vertices
S, we say v ∈ S is the closest to u if, among those vertices in S that are reachable from u, vertex v is

Name: Page 16 of 17

the one reachable via a path of the shortest total cost. Given two distinct vertices x, y ∈ V , design
an algorithm that finds the closest vertex to x that is also reachable by y . Your algorithm must
run in O(m) time.

Please note the following:

• It may be the case that the closest vertex to x reachable by y is actually x itself.

• You may assume that at least one vertex is reachable by both x and y .

• You may assume that m > 0.

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

SOLUTION:
• Run single-source tree-building BFS from node x to get lengths of shortest paths from x

to every other node in the graph. The nature of BFS guarantees we get these shortest
paths arranged in order of distance from x (the distance-0 node first, then the distance-1
nodes, and so on).

• Run single-source tree-building BFS from node y to get a set of nodes reachable from
y . Enumerate the vertices and then maintain a bit array isReachable which stores 0 if
not reachable by y , 1 if reachable by y . (Also acceptable: store reachable vertices as a
hashset)

• Iterate through the nodes of the graph in the order they were returned by the node-x BFS
run. Check whether each one is reachable by y (using either the bit array or hashset).
Return the first value which is reachable.

• For runtime, we first run single-tree-building BFS twice. In any graph, this BFS runs in
time O(m) because every new node we encounter as we build our tree must have been
reached by some distinct edge; that is, no matter how large n is in the original graph, the
number of nodes we actually traverse in single-tree-building BFS is upper-bounded by the
number of edges we go through. So these two runs take O(m) time each. Then we iterate
through the output of the node-x BFS run (which is again limited by O(m) as before).
To check whether each of these is reachable by y takes constant time (deterministically
with a bit array, expected time with a hashset). So this also costs O(m) time, and the
overall runtime is also O(m).

5.3 (17 pt.)

Let G = (V, E) be a directed unweighted graph. We say G is “somewhat-connected” if for every pair
of vertices u, v ∈ V , either there is a directed path from u to v in G, there is a directed path from v
to u in G, or both.

Design an algorithm to determine if G is “somewhat-connected” in O(m + n) time.

[We are expecting: A clear English description (pseudocode optional) AND a brief justification of
runtime.]

Name: Page 17 of 17

SOLUTION:
• Run Kosaraju’s on G to get the SCCs. Convert G into G′ its SCC-DAG.
• Toposort G′.
• Go left to right through the toposort. If we find a pair of SCCs which are adjacent in the

toposort but do not have an edge between them in G′, return False.
• If we made it through that run without returning False, return True.
• For runtime, note that Kosaraju’s is O(m+ n) time, the transformation into an SCC-DAG

takes at most O(m + n) time, toposort is just DFS and takes O(m + n) time, and the
last check of consecutive SCCs in the toposort is linear in the number of SCCs, or O(n)
in the worst case, so overall runtime is O(m + n) as desired.

• (justification, which is unnecessary to receive credit: In order for G to be semi-connected,
it must be true that consecutive nodes in our toposort are connected left-to-right. The
reason for this is that if there were some pair in our toposort A,B such that A did not
have an edge to B, then there would be no path for A to get to B because they are
ordered consecutively in the toposort. Then the existence of this pair A,B would mean
the graph cannot be somewhat-connected (since the nodes within the SCCs do not have
paths between them) and we would return False. On the other hand, if every single
consecutive pair in the toposort obeys this property, that the first in the pair has an edge
leading directly to the second, then it confirms that we have a path that goes from one
SCC through each one of the rest; that is, the SCCs are all connected from left to right
in the toposort. Since the nodes within SCCs are strongly connected, and we see that
every possible pair of SCCs has a path between them (by looking at the toposort and
going from the more left of the two to the more right of the two), we can conclude that
every pair of nodes has a path between them in some direction and therefore that the
graph is somewhat-connected and we return True.)

This is the end!

