
PRACTICE Final Exam Solution CS161, Fall 2025

Instructions (that will appear on the real final exam)
• DO NOT OPEN THE EXAM UNTIL YOU ARE INSTRUCTED TO.

• Answer all of the questions as well as you can. You have 180 minutes.

• The exam is non-collaborative; you must complete it on your own. If you have any
clarification questions, please ask the course staff. We cannot provide any hints or
help.

• This exam is closed-book, except for up to three double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

• Please DO NOT separate pages of your exam. The course staff is not responsible
for finding lost pages, and you may not get credit for a problem if it goes missing.

• There are a few pages of extra paper at the back of the exam in case you run out of
room on any problem. If you use them, please clearly indicate on the relevant problem
page that you have used them, and please clearly label any work on the extra pages.

• Please make sure to sign out of the roster when handing in your completed exam to
the teaching team.

• Please do not discuss the exam until after solutions are posted! Of course for
this practice exam, feel free to discuss the solutions with the course staff and anyone
else!

General Advice
• If you get stuck on a question or a part, move on and come back to it later. The

questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

• Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

• There are 110 total points on this exam. There are seven problems across 22 pages.

Name and SUNet ID (please print clearly):

SOLUTION
__

1

This page intentionally blank. Please do not write anything you want graded here.

2

Honor Code
The Honor Code is an undertaking of the Stanford academic community, individually and
collectively. Its purpose is to uphold a culture of academic honesty. Students will support
this culture of academic honesty by neither giving nor accepting unpermitted academic aid
on this examination.

This course is participating in the proctoring pilot overseen by the Academic Integrity
Working Group (AIWG), therefore proctors will be present in the exam room. The purpose
of this pilot is to determine the efficacy of proctoring and develop effective practices for
proctoring in-person exams at Stanford.

Unpermitted Aid on this exam includes but is not limited to the following: collab-
oration with anyone else; reference materials other than your cheat-sheet (see below); and
internet access.

Permitted aid on this exam includes a “cheat-sheet:” two double-sided sheets of paper
with anything written on them, which you have prepared yourself ahead of time.

I acknowledge and attest that I will abide by the Honor Code:

[signed] ___________________________________

Exam Break Sign-out
I pledge that during my exam break:

• I will not bring any paper, electronic devices (phone, smart watch, smart glasses, etc),
or aid (permitted or unpermitted) out of or into the exam room.

• I will not communicate with anyone other than the course instructional staff about the
content of the exam.

Signature Confirming
Honor Code Pledge Exit Time Return Time Proctor Initial Length (min)

If you are feeling unwell and are not able to complete the exam, please connect with the
proctor to discuss options.

Good Luck!

3

This page intentionally blank. Please do not write anything you want graded here.

4

Multiple Choice and Short Answer
1. (29 pt.) [Multiple Choice!] For each of the parts below, clearly fill in your answers.

Ambiguously filled-in answers will be marked incorrect.

⃝ ⃝ ⃝⃝ ⃝

Filled in means:
“This is a

correct choice”

Empty means:
“This is not a
correct choice”

Anything else
may be marked

as incorrect!

[We are expecting: For each part, just clearly filled-in-answers. No explanation is
required or will be considered while grading.]

(a) (5 pt.) Which of the following algorithms can find shortest paths in weighted
directed graphs, that may have negative edge weights (but no negative cycles).
Select “Yes” for all that apply.

A. BFS
Yes # No

B. Dijkstra’s Algorithm
Yes # No

C. Bellman-Ford Algorithm
Yes # No

D. Floyd-Warshall Algorithm
Yes # No

E. Ford-Fulkerson Algorithm
Yes # No

SOLUTION:
C and D. A is false since BFS doesn’t work on weighted graphs, and B is false since
Dijkstra doesn’t work with negative edge weights. E is false since Ford-Fulkerson
doesn’t find shortest paths in any graph, it finds max flows.

5

(b) (3 pt.) In which of the following scenarios would Prim vs. Kruskal be asymptot-
ically faster for finding a valid minimum spanning tree? Select all that apply.

A. On a graph G = (V,E), where |E| = Θ(|V |) and the edge weights are all
integers from 1 to 10. Assume Prim’s algorithm uses a Fibonacci heap.

Prim’s is asymptotically faster
Kruskal’s is asymptotically faster
They are asymptotically the same

B. On a graph G = (V,E) where |E| = Θ(|V |2), and the edge weights are
arbitrary comparable items. Assume Prim’s algorithm uses a Fibonacci heap.

Prim’s is asymptotically faster
Kruskal’s is asymptotically faster
They are asymptotically the same

C. You have no guarantees on the graph (other than that it is connected), and
you are using an RBTree in Prim’s algorithm.

Prim’s is asymptotically faster
Kruskal’s is asymptotically faster
They are asymptotically the same

SOLUTION:
In the explanations below, n = |V | and m = |E|.
A. Kruskal is faster. Prim runs in time O(n log n+m) = O(n log n) since m = Θ(n),
and Kruskal runs in time approximately O(m) since we can radixSort the edges.
B. Prim is faster. Prim runs in time O(n log n+m) = O(m) = O(n2) if m = Θ(n2).
Kruskal runs in time O(m logm) = O(n2 log n) since the running time is dominated
by sorting the edges.
C. They are asymptotically the same. Prim runs in time O((n + m) log n) =
O(m log n) with and RBTree. (For the equality, we are using that n = O(m)
in a connected graph). Kruskal runs in time O(m logm) = O(m log n) (for the
equality, we are using that m ≤ n2, so log(m) = O(log n)). So they both have
running time O(m log n).

(c) (3 pt.) Suppose that s → v1 → v2 → · · · → vℓ → t is a shortest path from s
to t in a connected graph with (possibly negative) edge weights, but no negative
cycles.
Which of the following are true?

A. The path s→ v1 → v2 → · · · → vi is a shortest path for all i = 1, . . . , ℓ.
True # False

B. If all the edge weights in G are distinct, then this shortest path must be
unique.

6

True # False
C. If you were to double all the edge weights in G, then s → v1 → v2 → · · · →

vℓ → t would still be a shortest path in the transformed graph.
True # False

SOLUTION:
A is true (sub-paths of shortest paths are shortest paths)
B is false (for example, consider two paths, one with weights 2 and 3, and one with
weights 1 and 4)
C is true. Let G′ be G after all the edge weights have been doubled, and notice
that the cost of a path in G′ is twice the cost in G. So if this path (call it P) were
not shortest in G′, then there would be some other path P ′ so that 2 · cost(P ′) <
2 · cost(P). But then dividing by 2, we see that cost(P ′) < cost(P), a contradiction.

7

(d) (5 pt.) Suppose you want to count the number of ways to tile a 2× n grid with
tiles. You have (an infinite number of) tiles that are 2× 2, 1× 2, and 2× 1. For
example, if n = 6, here are two legitimate tilings:

Let D[j] be the number of legitimate tilings of a 2 × j board. Which of the
following is a correct recursive relationship between these sub-problems?

A. # D[j] = D[j − 2] +D[j − 1]

B. # D[j] = D[j − 2]×D[j − 1]

C. # D[j] = D[j − 2] + 2 ·D[j − 1]

D. # D[j] = 2 ·D[j − 2] +D[j − 1]

E. # None of the above.

SOLUTION:
The correct answer is D. To see this, consider what possibilities there are for the
j ’th column. Either it is a 2 × 1 domino, in which case there D[j − 1] ways to fill
in the rest. Or it is not, in which case the last 2 × 2 square is filled with either a
2 × 2 tile, or two 1 × 2 tiles stacked on top of each other. In that case, there are
2D[j − 2] ways. So we add the two cases together to get the answer (D).

(e) (5 pt.) Suppose you have M identical items that you want to allocate to n
people. Each person wants as many items as possible, up to some limit B, but
they have diminishing returns. If person i already has s− 1 items, then the value
they get from the s’th item is ∆i,s, where

∆i,1 ≥ ∆i,2 ≥ · · · ≥ ∆i,B.

There is no benefit to anyone getting more than B items.
You want to decide how to allocate items to maximize total value among all n
people. You will give out the items one at a time, following a greedy strategy.
Which greedy rule is correct for this problem? Choose the best answer. Assume
that ties are broken arbitrarily.

A. # Give the next item to the person with the smallest total value so far. (If
person i has s− 1 things so far, their total value so far is

∑s−1
j=1 ∆i,j).

B. # Give the next item to the person who has the most marginal benefit from
the next item. (If person i has s− 1 things so far, their marginal benefit from
the next item is ∆i,s).

8

C. # Give the next item to the person who has the most left to gain. (If person
i has s− 1 things so far, the amount they have left to gain is

∑B
j=s∆i,j).

SOLUTION:
The solution is B (maximize marginal gain).
To see that A is not correct, suppose that there is one person, Alice, for whom
∆i,s = 0 for all s; and one person, Bob, with ∆i,s > 0 for s ≤ B . Then after
possibly giving one item to Bob, we’d give the rest to Alice, when in fact we should
have given all to Bob.
To see that C is not correct, suppose that there are 3 people and 3 items, and
that B = 3. Alice and Bob have ∆i,1 = 3 and ∆i,s = 0 for s > 1. Carol has
∆Carol,s = 2 for all s. The algorithm would give the first item to Carol (since
she’d have remaining upside 6 > 3); the second item to Carol (with remaining
upside 4 > 3) and the last item to one of Alice or Bob. This results in a value of
2 + 2 + 3 = 7. However, the optimal solution is to give one item to each person,
for value 2 + 3 + 3 = 8.

9

(f) (5 pt.) Consider the following graph, which shows an s-t flow. Below, the
notation x : y means that the edge has flow x out of total capacity y.

s

a

b

t

0 : 2

1 : 1

1 : 2

1 : 3

0 : 4

A. Which of the following are augmenting paths in G? Fill in one bubble for
each path.

Path Augmenting Path Not an augmenting path
s→ a→ t # #

s→ a→ b→ t # #
s→ b→ a→ t # #

B. What is the maximum flow in this graph? Choose exactly one.
2
3
4
5

SOLUTION:
A. s → a → t and s → a → b → t are augmenting paths. s → b → a → t is not,
since it uses the full edge s→ b.
B. The max flow is 3. You can see this because if we were to update along the
augmenting path s → a → t twice, we’d get flow 3, and we know this is optimal
because we can find a cut with cost 3 (e.g., the cut that separates s from {a, b, t}).

(g) (3 pt.) Suppose Alice is designing an algorithm to decide which public school
students should get need-based access to a free tutoring service. Alice’s algorithm
uses a student’s GPA as an input. Barbara raises a concern that the algorithm
does not consider whether the student is taking advanced, on-level, or remedial
math courses, and a low grade in an advanced course may show less need than a
low grade in a remedial course. What best describes the issue Barbara is raising?

A. # Barbara is concerned about an abstraction
B. # Barbara is concerned about an idealization
C. # Barbara is concerned about an NP-hard problem

10

SOLUTION:
A is correct. Abstraction omits details of a real-world situation. In contrast, ide-
alization changes details of a real-world situation, so B is not as good an answer.
NP-hardness isn’t relevant here, so C is not correct either.

11

2. (9 pt.) [Recurrence Relations] For each part below, give the best big-Oh bound
you can for each T (n).

[We are expecting: For each part, an expression “O(something in terms of n).” No
explanation is required or will be considered. Your answer should be as simplified as
possible.]

(a) (3 pt.) T1(n) = 4T1(⌊n/2⌋) + n3 for n ≥ 3, T1(n) = 1 for n < 3.

T1(n) = ___________

(b) (3 pt.) T2(n) = T2(⌊n/2⌋) + log2 n for n ≥ 2, T2(n) = 1 for n < 2.
[HINT: Recall that

∑T
j=0 j =

T (T+1)
2

, and log2(a/b) = log2(a)− log2(b).]

T2(n) = ___________

(c) (3 pt.) T3(n) = T3(⌊n/2⌋) + T3(⌊n/4⌋) + n for n ≥ 4, T3(n) = 1 for n < 4.

T3(n) = ___________

SOLUTION:

(a) T1(n) = O(n3) by the Master Theorem

(b) T2(n) = O((log n)2). To see this, we can use the tree method. There are T ≈
log2(n) levels, and at the j ’th level we do log2(n/2

j) work. Summing this us, we get

T∑
j=0

log2(n/2
j) =

T∑
j=0

log2(n)−
T∑

j=0

log2(2
j)

= T log2(n)−
T∑

j=0

j

≈ log2(n)
2

2
.

You could also use the substitution method to prove that this is the right answer,
but “guessing” the answer first might be hard without the tree method.

(c) T3(n) = O(n). To see this, we can use the substitution method. We guess that
T3(n) ≤ Cn, since we know that O(n) is the smallest it can be (because of the “+n”
term at the end). To check the base cases, when 1 ≤ n ≤ 4, we get 1 = T3(n) ≤ Cn

12

as long as C ≥ 1. Next we do the inductive step. Assuming that T3(n) ≤ Cn for
all n < j , by induction we see that

T3(j) ≤
Cn

2
+

Cn

4
+ n =

(
3C

4
+ 1

)
n ≤ Cn

as long as C ≥ 4. So if we choose C = 5 or something, this proves that T3(n) =
O(n).

3. (20 pt.) [True or False and Why?] For each of the parts below, say whether the
statement is true or false, and give a short explanation saying why. You don’t have to
give a formal proof, but your explanation should be convincing to the grader. You can
use any statements/algorithms we have seen in class.

(-) (Example:) Let G be an undirected unweighted connected graph. True or False:
Given s and t, it is possible to find a shortest path from s to t in G in time
O(n+m).

Answer: True. We can run BFS starting at s to find the distance from s to any
other vertex in an unweighted graph, in time O(n+m).

(a) (5 pt.) Suppose that f(n) and g(n) are positive functions of n, and that f(n) =
O(g(n)). True or False: f(n) + g(n) = O(g(n)).
Explain your answer, using the definition of big-O.

SOLUTION:
True. If f(n) = O(g(n)), then there are constants C and n0 so that f(n) ≤ Cg(n)
for all n ≥ n0. This implies that f(n) + g(n) ≤ (C + 1)g(n) for all n ≥ n0, which
shows that f(n) + g(n) = O(g(n)).

13

(b) (5 pt.) Your friend thinks they have a way to get Dijkstra’s algorithm to work
with negative edge weights. Suppose that G is a weighted directed graph, so that
the weight of (u, v) ∈ E is w(u, v). Suppose that the smallest (most negative)
edge weight is −w∗ < 0, so w∗ = −min(u,v)∈E w(u, v). Let G′ be the same as G,
except with edge weights w′(u, v) = w(u, v) + w∗. By construction, G′ has no
negative edge weights, so we can run Dijkstra’s algorithm on G′ and return the
resulting shortest paths.
True or false: this algorithm (constructing G′ and running Dijkstra’s algorithm
on it) will correctly return shortest paths in G. (It’s okay if it doesn’t return the
correct path lengths). If your answer is “True,” explain why. If your answer is
“False,” give a counter-example.

SOLUTION:
False. For example, in the graph G =

s

a

t

2

1

−2

the shortest path from s to t is s → a → t, which has cost 0. On the other hand,
if we add 2 to all the edges to get G′ with all non-negative edge weights, we get:

s

a

t

4

3

0

and now the shortest path is the one edge s→ t, which has cost 3.

(c) (5 pt.) Your friend has developed a new hash family H that maps the integers
1, . . . ,M to n buckets, for n ≥ 2. Every function h ∈ H has the property that
it maps any pair x ̸= y of integers in {1, . . . ,M} to distinct buckets (that is,
h(x) ̸= h(y) for all h ∈ H), except for 3 and 5: for these two values, we will have
h(3) = h(5) for all h ∈ H. However, your friend tells you that for different h ∈ H,
which bucket 3 and 5 land in is uniformly distributed over the buckets. (That is,
for any i ∈ {1, . . . , n} Prh∈H[h(3) = i] = 1/n, and similarly for h(5)).
True or False: H is a universal hash family. Explain your answer, using the
definition of universal hash family.

SOLUTION:
False. The definition of a universal hash family is that for all x ̸= y, Prh∈H[h(x) =

14

h(y)] ≤ 1/n. Your friend has just told you that

Pr
h∈H

[h(3) = h(5)] = 1,

so this is not a universal hash family, since 1 > 1/n.

15

(d) (5 pt.) In class, we saw a minimum spanning tree, which is a spanning tree of
minimum cost. A maximum spanning tree is a spanning tree of maximum cost.
Consider modifying Kruskal’s algorithm by, instead of greedily taking the lowest-
cost edge that doesn’t form a cycle, you take the highest-cost edge that doesn’t
form a cycle. Call this new algorithm max-Kruskal.
True or false: max-Kruskal correctly finds a maximum spanning tree in a con-
nected, undirected, weighted graph. Explain your answer.

SOLUTION:
True. There are (at least) two ways to see this.
Explanation 1: Imagine taking a graph G, and replacing every edge weight w
with −w to get a graph G′. Then running Kruskal on G′ is the same as running
max-Kruskal on G. Thus, max-Kruskal will return a minimum spanning tree in G′,
which is the same as a maximum spanning tree in G.
Explanation 2: When we were proving Kruskal’s algorithm worked, we did it by
showing that Kruskal always took a light edge crossing a cut that respected the
choices made so far. Similarly, max-Kruskal takes the heaviest edge crossing a cut
that respects the choices made so far. When analyzing Kruskal, we showed that
taking a light edge means that we are still on track for the lightest tree; exactly
the same logic shows that max-Kruskal stays on track for the heaviest tree.

16

Note: This next problem may be trickier, and is only worth 10 points out of 110 points
total. (There are two independent 5-point parts). You may want to come back to this
after you have finished the rest of the exam.

4. (10 pt.) How to do it? For each of the tasks below, explain briefly how you would
do it. You may use any algorithm we have seen in class as a black box.

[We are expecting: For each, a clear English explanation of your algorithms. You do
not need to include pseudocode, but you can if you think it makes your answer clearer.
You do not need to justify correctness or running time.]

(a) (5 pt.) [May be trickier.] Let G = (V,E) be an unweighted directed graph.
Recall that G is strongly connected if for every u, v ∈ V , there is a path from u
to v in G, and there is a path from v to u in G. Say that G is “not-so-strongly-
connected ” if, for every u, v ∈ V , either there is a path from u to v in G; or
there is a path from v to u in G. Give an algorithm to decide if a graph is
not-so-strongly-connected in time O(n+m).

SOLUTION:
Run Kosaraju’s algorithm from class in time O(n + m) to find the SCC-DAG G′

for G. Then topo-sort the vertices of G′ (we can either do this in time O(n +m)
again using the topo-sort algorithm from class, or we can just return the SCCs in
reverse order of finish time from the original DFS run in Kosaraju’s algorithm). Let
S1, S2, . . . , Sℓ be the sorted SCCs. Then we check if, for every i ∈ {1, 2, . . . , ℓ− 1},
there is an edge from Si to Si+1 in G′. If there is, we return “Yes, this is not-so-
strongly-connected!” If there is not, we return “Nope!”
Not required: To see why this works, suppose that the algorithm returns “Nope!”
Then we claim that G is NOT not-so-strongly connected. Indeed, since the algo-
rithm returned Nope, there must be some i so that there is no edge from Si to
Si+1. Let u be any vertex in Si and let v be any vertex in Si+1. Then there is
no path from v to u, since it would violate the topo-sorting of G′. There is also
not a path from u to v: If there were it couldn’t go through Sj for any j > i + 1
(or this would again violate the topo-sorting of G′, since there would be a path
from Sj to Si+1). So there must be an edge from Si to Si+1, but we just said
there wasn’t. So there is no path from either u to v or from v to u, so G is not
not-so-strongly-connected, as claimed.
On the other hand, suppose that the algorithm returns “Yes!” Then we claim that
G is not-so-strongly-connected. Indeed, let u and v be any two vertices in G, and
suppose that u ∈ Si and v ∈ Sj . Suppose without loss of generality that i ≤ j .
Then there is a path from u to v, by going through Si → Si+1 → · · · → Sj . So
indeed, G is not-so-strongly-connected.

Another part on next page

17

(b) (5 pt.) [May be trickier.] Let G = (V,E) be a connected, unweighted, undirected
graph. Let s, t ∈ V be distinct vertices. Call a vertex v ∈ V essential if every
shortest path from s to t in G passes through v. Given G, s, and t, find a list of
all of the essential vertices, in time O(n+m).
[HINT: Suppose that v lies on an shortest path from s to t. What can you say
about the distance from s to v and the distance of t to v, relative to the distance
from s to t?]

SOLUTION:
Let Ds[v] be the distance from s to v, and let Dt[v] be the distance from t to v.
The algorithm is:

• Run BFS once from s to fill in Ds for all v.
• Run BFS again from t to fill in Dt for all v.
• Iterate through all v ∈ V , and create a set S ⊆ V that consists of all v so that
Ds[v] +Dt[v] = Ds[t].

• Bucket-sort the vertices in S based on the key Ds[v], in time O(n). (Note that
there are at most n values that Ds[v] can take on).

• For each i = 0, 1, 2, . . . , n, if the i’th bucket has only one vertex v in it (that is,
if v is the unique vertex in S so that Ds[v] = i), then declare that v is essential.

The running time is O(n+m) for the two runs of BFS, O(n) for the bucket-sorting,
and another O(n) to step through the buckets, so O(n+m) total.
Not required: To see why this works, notice first that v is on any shortest path from
s to t if and only if Ds[v] + Dt[v] = Ds[t]. That’s because sub-paths of shortest
paths are shortest paths: if Ds[t] is the length of a shortest path from s to t, then
we can make it by taking a shortest path from s to v (Ds[v]) and a shortest path
from v to t (distance Dt[v], since G is undirected).
Thus, the set S that the algorithm creates is the set of all v that appear in any
shortest paths. Now, we claim that v ∈ S is essential if and only if there is no other
w ∈ S so that Ds[w] = Ds[v].
To prove the claim, suppose first that there is some w so that Ds[w] = Dw[v] =: d.
Then there is a shortest s-t path that uses d steps to go from s to w; and then
Ds[t]− w steps to go from w to t. This path can’t involve v: If v appeared in the
first part of the path (before w), then actually the distance between s and v was
less than d. And if v appeared in the second part of the path (after w), then we
could have made a shorter path from s to t by going to v rather than w. So v is
not essential.
On the other hand, suppose that v is not essential. Then there must be some
shortest path from s to t that doesn’t involve v. Let d = Ds[v], and let w be the d’th
vertex in this path. But then Ds[w] = d (sub-paths of shortest paths are shortest
paths), so v is not alone in its bucket.

18

Algorithm Design

5. (16 pt.) [Keeping the dream alive] Suppose that you follow a sports league with
n+1 teams, teams 0, 1, . . . , n. Team 0 (let’s call them Team Cardinal) is your favorite
team. Each team plays each other some number of times, and at the end of the season,
the team who has won the most games is declared the champion. (If it’s a tie, there
are multiple champions).

Right now, we are part-way through the season. Suppose that each team i has won wi

games so far. Team Cardinal (aka Team 0), has G games left to play in the season.
For each other pair of teams i, j ∈ {1, 2, . . . , n} (not including Team Cardinal), there
are gi,j games left in the season between Team i and Team j.

As an avid fan, you want to know if it’s still possible for Team Cardinal to become
champion. You decide to solve this problem using the Ford-Fulkerson Algorithm.

In more detail, consider the following graph:

s

{1, 2}

{1, 3}

...

{i, j}

...

{n, n− 2}

{n, n− 1}

?
?

?

?

?

1

2

...

i

j

...

n

∞

∞
∞

∞
∞

∞
∞

t

?
?

?

?

?

This graph has:

• Vertices:

– Special vertices s and t

– One vertex for each (unordered) pair {i, j} for i, j ∈ {1, . . . , n} of distinct
teams (not including Team Cardinal)

– One vertex for each team i ∈ {1, . . . , n} (not including Team Cardinal)

• Edges:

19

– A directed edge from s to each “{i, j}” vertex. The weight of these edges is
TBD.

– A directed edge from each “i” vertex to t. The weight of these edges is TBD.
– For each distinct pair i, j ∈ {1, . . . , n}, there is a directed edge from vertex

“{i, j}” to vertex “i”; and a directed edge from vertex “{i, j}” to vertex “j”.
All these edges have weight ∞.

(a) (7 pt.) Explain how to set the weights on the “?” edges (the ones with weight
TBD) so that a maximum flow in this graph tells you whether or not Team
Cardinal can still be champions.
That is, your goal is to decide if it is still possible for Team Cardinal to win at
least as many games as any team 1, . . . , n, assuming they win all their remaining
G games, as well as the w0 games they have already won.
[HINT: You’ll need to use the parameters gi,j, wi, and G defined above.]
[HINT: Imagine that the flow on the edge ({i, j}, i) represents how many games
Team i will win against Team j going forward...]
[We are expecting: Just a description of the edge weights. No justification is
required (yet)]

SOLUTION:
For the edges (s, {i, j}), the edge weight should be gi,j . For the edges (i, t), the
edge weight should be w0 +G− wi.

(b) (3 pt.) Given your edge weights in the previous part, explain how to use the
Ford-Fulkerson algorithm to tell if Team Cardinal can still be champions.
[We are expecting: A clear English description of your algorithm.]

SOLUTION:
If we have w0 +G−wi < 0 for any i (that is, if we have a negative capacity), then
sadly it’s not possible for Team Cardinal to win.
If all capacities are non-negative, run FF on the graph with the weights above to
find a maximum flow from s to t. If the maximum flow is equal to

∑
i,j gi,j , then it

is still possible for Team Cardinal to win. Otherwise it’s not.

20

(c) (6 pt.) Explain why your algorithm is correct.
[We are expecting: A clear explanation; it doesn’t have to be a formal proof.]

SOLUTION:
Note: Such a long explanation would not be needed for full credit, but we want to
make sure the solutions are clear.
If there are any negative edge weights, then w0 +G < wi for some i. In this case,
the maximum number of games Team Cardinal can possibly win, w0+G, is already
less than the number of games team i has won. So Team Cardinal can’t win. So
assume that all the edge weights are non-negative, and we run Ford-Fulkerson.
Now, suppose it is possible for Team Cardinal to win. We will construct a flow with
value

∑
i,j gi,j , demonstrating that the max flow is at least this. (And since this is

also the sum of the capacities coming out of s, this must be equal to the max flow).
First, we fill up each edge leaving s. Then, following the hint, we set the flow on
({i, j}, i) to be the number of games that team i would win in the scenario where
Team Cardinal is victorious. This means that the flow coming into node i is the
number of games that Team i would win going forward; call this fi. Thus, the total
number of games that team i would win all season is fi+wi. Since Team Cardinal
is victorious in this scenario, that means that

fi + wi ≤ G+ w0,

or
fi ≤ w0 +G− wi.

The right hand side was our weight on the edge from node i to t, so we have just
shown that the flow fi coming out of node i can fit into this edge. Thus, this is a
legit flow.
Going the other way, suppose that there is a maximum flow in this graph with
value

∑
i,j gi,j . Then all of the edges leaving s must be full. We know from class

that all the flow values must be integers (since the capacities are integers – if you
are worried about the ∞’s, note that you could replace them with a large integer
like

∑
i,j gi,j). Thus, we interpret the flow on the edge ({i, j}, i) as “the number

of games i will win against j going forward;” call this value fi. Then, by the same
logic above, the capacity of w0 +G− wi on the edge (i, t) implies that, since the
flow is legit, we must have

w0 +G− wi ≥ fi,

or
w0 +G ≥ fi + wi,

which implies that, in this set-up, Team Cardinal wins at least as many games as
Team i, for every i. Hooray! Go Cardinal!

21

6. (14 pt.) [Procrastination Optimization] Over the upcoming break, Lucky the
Lackadaisical Lemur is excited to kick back and binge-watch some shows. Lucky wants
to watch k episodes over break; he’s not very discerning, so he doesn’t care what he
watches.

Lucky could access to m different platforms (LemFlix, Madagascar Prime-ate, Ring-
tail+, etc). Suppose that the i’th platform has a fee of si to join. (Note: Lucky is
planning on subscribing for one month during the break and then canceling, so it’s a
one-time fee for him). Once he’s joined Platform i, each piece of content on Platform i
costs some additional fee: Say that there are Q things on each platform, and that the
j’th one costs fi,j. You can assume that the pieces of content are ordered by price, so

0 ≤ fi,1 ≤ fi,2 ≤ · · · ≤ fi,Q.

Design a DP algorithm to help Lucky find the minimum cost to watch k things across
all these m platforms. Your algorithm should use the sub-problems:

D(i, j) = The least money Lucky can spend to watch j things across the first i platforms.

If there aren’t j distinct things to watch on the first i platforms, then D(i, j) =∞.

(a) (2 pt.) What is D(i, 0) for each i ∈ {1, . . . ,m}?
[We are expecting: Your answer, no explanation required.]

SOLUTION:
D(i, 0) = 0 for all i ∈ {1, . . . ,m}. That’s because if I don’t buy anything, it costs
zero.

(b) (2 pt.) What is D(1, j) for each j ∈ {1, . . . , k}?
[We are expecting: Your answer, and a sentence or two of explanation.]

SOLUTION:

D(1, j) = s1 +

j∑
ℓ=1

f1,ℓ

for all j ≤ min{k,Q}, and D(1, j) =∞ if j > Q. That’s because I’m only allowed
to use Platform 1; so I pay the cost s1 to use that platform, and then I buy the
first j (the cheapest) pieces of content.

22

(c) (5 pt.) Write a recurrence relation for the problems D(i, j).
[We are expecting: Your answer, and a sentence or two of explanation.]

SOLUTION:
We start with the explanation. There are two cases, either Lucky’s solution involves
Platform i or it does not. If it does not, then D(i, j) = D(i − 1, j). If it does,
then say that Lucky’s solution buys t pieces of content from Platform i, for some
1 ≤ t ≤ min{Q, j}. Then the cost would be D(i, j) = D(i−1, j−t)+si+

∑t
ℓ=1 fi,ℓ.

Putting all these cases together, we get

D(i, j) = min

{
D(i− 1, i), min

1≤t≤min(j,Q)
D(i− 1, j − t) + si +

t∑
ℓ=1

fi,ℓ

}

(d) (5 pt.) Design an algorithm that runs in time O(mQk) to compute the minimum
cost that Lucky can spend. You algorithm should take as input k, and array F
so that F [i, j] = fi,j.
[We are expecting: Clear pseudocode, and a justification of the running time.]

SOLUTION:
Our pseudocode is:

Function StreamingLemur(k,Q, F, S):
// F [i, j] is the cost of the j-th cheapest item on platform i
// S[i] is the cost to join platform i
Initialize array D[0 . . .m][0 . . . k] so that all entries are ∞
for i← 0 to m− 1 do

D[i][0]← 0

for i← 1 to m do
for j ← 1 to k do

D[i][j]← D[i− 1][j]
C ← 0

// C keeps track of
∑t

ℓ=1 F [i, ℓ] as t varies
for t← 1 to min(j,Q) do

C ← C + F [i, t]

D[i][j]← min
(
D[i][j], S[i] + C +D[i− 1][j − t]

)
return D[m][k]

Note: we could have used the “base case” given in Part (b). In fact that’s not

23

needed. The reason that Part (b) was there was mainly as a warm-up for part (c),
but it’s also correct to use it as a base case if you want.

24

Algorithm Analysis

7. (12 pt.) [FIF Caching]

Consider the following caching problem. Suppose we are given:

• A sequence p1, . . . , pn of pages in memory that an algorithm is going to ask for, in
order. (We know this up-front). Some of the pages might repeat, so it’s possible,
say, that p3 = p17.

• A small fast cache, which can store at most k < n pages.

At each timestep t, the page pt arrives. If pt is not in the cache at time t, then:

• We have a cache miss, and have to go find pt in memory, which is costly.

• We add pt to our cache.

• We evict another page from the cache (of our choice) to make room for pt.

If pt is in the cache at time t, then:

• We get a cache hit, and can retrieve the page quickly.

• If we like, we have the option to evict a page from cache and retrieve another one
from memory, although this usually wouldn’t be a good idea (since it would just
be extra memory calls).

Our goal is to design an eviction policy (that is, a schedule for which page gets evicted
at each time step, if any) to minimize the number of memory accesses over all n
timesteps.

In this problem, we will analyze the FIF (farthest-in-the-future) policy. This policy
works as follows. At time t, if pt is not in the cache, we find the page x in the cache
that next occurs furthest in the future. That is, for each x, we compute

NextTime(x) = min{i > t : x = pi},

and choose the x with the largest NextTime value. By convention, if x never appears
again, NextTime(x) =∞. The policy breaks ties arbitrarily.

25

(a) (2 pt.) To make sure that you understand the algorithm, suppose that the stream
of items was a, b, c, a, b, a, c; k = 2; and that the original cache was {a, b}. At each
time-step, what is the cache after FIF has evicted an element? Was there a cache
hit or a cache miss? We have filled in the first three for you.
[We are expecting: The rest of the table filled in.]

Time t Item pt Cache Hit or Miss?
1 a {a, b} hit
2 b {a, b} hit
3 c {a, c} miss
4 a
5 b
6 a
7 c

SOLUTION:

Time t Item pt Cache Hit or Miss?
1 a {a, b} hit
2 b {a, b} hit
3 c {a, c} miss
4 a {a, c} hit
5 b {a, b} miss
6 a {a, b} hit
7 c {a, c} or {b, c} miss

(b) (10 pt.) Our goal is to prove that the FIF policy is optimal (that is, it minimizes
the number of memory accesses). To do this, we will follow our usual recipe of
showing that our greedy choices don’t rule out success. More precisely, we will
prove the following claim.
Claim: Suppose that, at time t, there is an optimal eviction policy (for p1, . . . , pn
and cache size k) consistent with the choices that FIF has made so far. Then at
time t+1, there is still an optimal eviction policy consistent with the choices FIF
has made so far.
We will walk you through the proof. Suppose that P is an optimal policy that is
consistent with the choices made by FIF at time t. We will construct an optimal
policy P ′ that is consistent with the choices made by FIF at time t+ 1.
To begin, define P ′ to do exactly the same thing as P (and hence FIF) up to time
t. Then define P ′ to do the same thing that FIF would have done at time t+ 1.

i. (1 pt.) Suppose that there is no cache miss at time t + 1. Explain why we
are done proving the claim in this case.

26

[We are expecting: A sentence or two.]

SOLUTION:
Since there is no decision to make at time t+ 1, and P is already consistent with
all decisions up until time t, we can choose P ′ = P , and P ′ will be consistent with
all decisions up to time t+ 1.

Given the previous part, suppose that there is a cache miss at time t+ 1, so FIF
evicts the element x that appears furthest in the future. Since we defined P ′ to
do the same thing as FIF at time t + 1, P ′ evicts x at time t + 1. Suppose that
P evicts y at time t+ 1.

ii. (1 pt.) Suppose that y = x. Explain why we are done proving the claim in
this case.
[We are expecting: A sentence or two.]

SOLUTION:
If y = x then we can return P ′ = P , since it made all the same decisions as FIF
up until time t+ 1.

Thus, for the rest of the problem, assume that y ̸= x.
Let t∗ be the first time after t + 1 when we can’t define P ′ to do the same thing
that P does. For example, if P would evict some w at time t∗, but w is not in the
cache of P ′ at time t∗, then we can’t define P ′ to do the same thing that P does.
Define P ′ to do the same thing as P up until t∗ − 1. Notice that, up until time
t∗ − 1, the caches only differ by one element: P has x (having evicted y), and P ′

has y (having evicted x). All other cached items are the same, since P and P ′

made all the same decisions up until time t∗ − 1.
We need to figure out how to define P ′ at time t∗. There are three cases for what
can happen. You will address them in the following sub-parts.
The goal is for P and P ′ to have the same cache after time t∗, and for P ′ to
make no more trips to memory than P .

iii. (2 pt.) Suppose that pt∗ = z is the request at time t∗, and that z is not in
the cache for either P or P ′. Suppose that P chooses to evict x and replace
it z. How would you define P ′’ behavior in this case?
[We are expecting: A clear description of what P ′ would do, and why it
satisfies the goal above.]

SOLUTION:
P ′ should evict y and replace it with z. After this change, P and P ′ have the
same cache.

27

iv. (3 pt.) Suppose that pt∗ = y. Then P has a cache miss. Suppose that P
chooses to evict an element w. How would you define P ′’ behavior in this
case?
[HINT: Recall that it’s okay for a schedule to evict something even if there’s
not a cache miss.]
[We are expecting: A clear description of what P ′ would do, and why it
satisfies the goal above.]

SOLUTION:
If w = x, then P ′ should do nothing. Then P ′ has one fewer trip to memory
than P , and the caches are the same (P just replaced x with y, and P ′ had
y instead of x already).
If w ̸= x, then P ′ should make an extraneous trip to memory; it should evict
w and include x instead. Now P ′ and P both have the same number of trips
to memory, and they have the same cache (they both have both x and y, and
neither has w).

v. (3 pt.) The third case is that pt∗ = x. Explain why this can’t happen.
[We are expecting: A clear explanation about why this can’t happen.]

SOLUTION:
By the definition of FIF, the next time y appears is before the next time x
appears. So this case can’t happen at time t∗, since the previous case would
have triggered t∗ earlier.

Altogether, these cases show us how we can define a schedule P ′ at time t∗ so that
P and P ′ have the same cache at time t∗ + 1. After that, we can define P ′ to do
the same thing that P would have done, since P ′ will face all the same situations
going forward.
Now that we have fully defined P ′, we see that P ′ is a policy with no more memory
accesses than P , so it’s still optimal. Moreover, at time t+ 1, P ′ made the same
decision as FIF. This proves the statement. So FIF is optimal – hooray!

This is the end of the exam!

28

This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you

want extra work on this page to be graded, clearly label which question your extra work is
for, and make a note on the problem page itself.

29

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.

30

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.

31

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.

32

