PRACTICE Exam 1 Solution CS161, Fall 2025

Instructions that wil appear on the real exam

e DO NOT OPEN THE EXAM UNTIL YOU ARE INSTRUCTED TO.
e Answer all of the questions as well as you can. You have one hour.

e The exam is non-collaborative; you must complete it on your own. If you have any
clarification questions, please ask the course staff. We cannot provide any hints or
help.

e This exam is closed-book, except for up to two double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

e Please DO NOT separate pages of your exam. The course staff is not responsible
for finding lost pages, and you may not get credit for a problem if it goes missing.

e There are a few pages of extra paper at the back of the exam in case you run out of
room on any problem. If you use them, please clearly indicate on the relevant problem
page that you have used them, and please clearly label any work on the extra pages.

e Please make sure to sign out of the roster when handing in your completed exam to
the teaching team.

e Please do not discuss the exam until after solutions are posted! (but of course
it’s fine to discuss this practice exam :))

NOTE for the practice exam: This exam may be less polished than a real exam would
be. The goal is to give you a rough sense of the length and format for the real midterm.

General AdViCG also for the real exam

e If you get stuck on a question or a part, move on and come back to it later. The
questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

e Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

e There are 100 total points on this exam. There are three problems across eight
pages.
Name and SUNet ID (please print clearly):
SOLUTION
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Honor Code

Note: Of course you can do anything you want on this practice exam. But this
is the statement of the honor code and proctoring policy that will appear on the
real exam.

The Honor Code is an undertaking of the Stanford academic community, individually and
collectively. Its purpose is to uphold a culture of academic honesty. Students will support
this culture of academic honesty by neither giving nor accepting unpermitted academic aid
on this examination.

This course is participating in the proctoring pilot overseen by the Academic Integrity
Working Group (AIWG), therefore proctors will be present in the exam room. The purpose
of this pilot is to determine the efficacy of proctoring and develop effective practices for
proctoring in-person exams at Stanford.

Unpermitted Aid on this exam includes but is not limited to the following: collab-
oration with anyone else; reference materials other than your cheat-sheet (see below); and
internet access.

Permitted aid on this exam includes a “cheat-sheet:” two double-sided sheets of paper
with anything written on them, which you have prepared yourself ahead of time.

I acknowledge and attest that I will abide by the Honor Code:

Exam Break Sign-out

I pledge that during my exam break:

e [ will not bring any paper, electronic devices (phone, smart watch, smart glasses, etc),
or aid (permitted or unpermitted) out of or into the exam room.

e [ will not communicate with anyone other than the course instructional staff about the
content of the exam.

Signature Confirming

Honor Code Pledge Exit Time | Return Time | Proctor Initial | Length (min)

If you are feeling unwell and are not able to complete the exam, please connect with the
proctor to discuss options.

Good Luck!
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1. (45 pt.) [Multiple Choice!] For each of the parts below, clearly fill in the box for
all of the answers that are true.

Grading note: In each part below, each of the first five answers are worth three points. The “None
of the above” option on its own is not worth any points, it’s just there so that you can register that
you intentionally didn’t fill in anything. If you fill in both “None of the above” and any other answer,
we will ignore your “None of the above”. If you don’t fill in anything and also don’t fill in “None of
the above”, we will assume you did not complete the problem and you will get a zero. Ambiguously

filled-in answers will be marked as incorrect.

[We are expecting: For each part, just clearly fill in answers. No justification is
required or will be considered when grading.|

(a) (15 pt.) Which of the following quantities are 2(n?)?

(A) 500n°

(B) nlogn

(C) The running time of MergeSort

(D) The worst-case running time of QuickSort
(E) 9log?n

None of the above.

oooodg

SOLUTION:
A, D and E.

(b) (15 pt.) Which of the following recurrence relations satisfy T'(n) = O(nlogn)?

LI (A) T'(n) =2T(|n/2]) + 500n for n > 2; T(0) = T(1) = 1.
L (B) T(n) =2T(|n/2]) + v/n for n > 100; T'(n) = 1 for n < 100.
0 (C) T(n)=T(|n/5])+T(|7n/10]) +n for n > 10; T(n) = 1 for n < 10.
L (D) T(n) =T(|v/n])+nforn>4; T(n)=1for n <4.
L (E) T(n) =2T(|n/2]) +1logn for n > 4; T(n) =1 for n < 4.
[0 None of the above.
SOLUTION:

Only (A) (which you can see via the Master method; and we’ve seen this recur-
rence a bunch in class). (B) is ©(n) (master method or tree method), (C) is O(n)
(as we saw in class when analyzing SELECT), (D) is O(n) (you can see this via
the tree method), (E) is ©(n) (you can see this via the tree method; or you can
see that it is O(n) and thus not ©(nlogn) by comparing it to (B)).

(¢) (15 pt.) Which of the following are true?
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(1 (A) “Worst-Case Analysis” means that we look at the running time of an
algorithm on the worst possible input.

] (B) “Worst-Case Analysis” only applies to randomized algorithms, where
it refers to choosing the worst-possible randomization.

[J (C) You can sort a list of n arbitrary comparable elements asymptotically
faster with a randomized algorithm than with a deterministic one.

0 (D) If f(n) = O(g(n)), then \/f(n) = O(y/g(n)) for all monotone
increasing positive functions f,g.

O (E)If f(n) = O(g(n)), then 10/™ = O(109™) for all monotone increasing
positive functions f, g.

[0 None of the above.

SOLUTION:
A and D. A is true by definition. B is false, worst-case analysis applies to deter-
ministic algorithms too. Cis false; Q(nlogn) is a lower bound even for randomized

algorithms. D is true; if f(n) < cg(n) for all n > ng, then \/f(n) < /c-+/g(n)

for all n > ng. E is false; a counterexample is f(n) = 2n and g(n) = n.



2. (35 pt.) [Algorithm Design] Let A be an array of n integers (possibly negative).
For 0 < i < j < n, define the sub-array product for i,j to be [];_; A[(].

(a) (25 pt.) Design a divide and conquer algorithm that takes A as input and finds
the mazimum sub-array product. For example, if A = [0,10,—1,2, 6], then the
maximum sub-array product is 12 = A[3] x A[4], corresponding to ¢ = 3,j = 4.
Your algorithm should run in time O(n).

For partial credit you may assume that all of the integers in A are non-negative.
For partial credit you may give a slower (e.g. O(nlogn)-time) algorithm.

[We are expecting: Clear pseudocode and an English description of what your
algorithm is doing. You do mot need to prove that it is correct or justify the
running time (for now). You may assume that n is a power of two.|

Note for practice exam: Depending on how you do this problem, the solution
may involve more writing that we would shoot for on an actual exam; we recognize
that the exam is only 60 minutes long and writing stuff down takes time. But we
hope that the conceptual difficulty of this problem is representative.

SOLUTION:
English Description: We give a divide-and-conquer algorithm. We first divide
the array into two halfs, L and R. In each half, we recursively run an algorithm
that finds:

e The maximum sub-array product

e The maximum prefix product (aka, corresponding to indices i = 0 and j > 0)

e The minimum (most negative) prefix product

e The maximum suffix product (aka, corresponding to indices i < n and j =

n—1)
e The minimum (most negative) suffix product
e The total product

The max sub-array product is then the max of:

e [’s max sub-array product
e [?’s max sub-array product
e [’s max sub-array suffix times R’s max sub-array prefix

e [’s min sub-array suffix times R’s min sub-array prefix
The maximum prefix is the max of:

e [’s max sub-array prefix

e The product of all of L, times R’s max sub-array prefix



e The product of all of L, times R’s min sub-array prefix

and so on.

Note: The problem is simpler if we assume the elements of A are non-negative.
In that case, we don’t need to keep track of the minimum sub-array products,
which are there because the product of two negative numbers is a positive
number.

Pseudocode: (Here we assume n is a power of 2, as the question said we are
allowed to do).

def maxSubArrayProd(A):
maxProd, maxPre, minPre, maxSuff, minSuff, totalProd

= maxSubArrayHelper (A)
return maxProd
def maxSubArrayHelper (A):
if len(A) == 1:
return A[0], A[0], A[0], A[O], A[0O], A[O]
n = len(A)

L = A[:n/2] # left half of the array

R = A[n/2:] # right half of the array
LmaxProd, LmaxPre, LminPre, LmaxSuff, LminSuff, Lprod

= maxSumArrayHelper (L)
RmaxProd, RmaxPre, RminPre, RmaxSuff, RminSuff, Rprod

= maxSumArrayHelper (R)

maxProd = max( LmaxProd, RmaxProd,
LmaxSuff * RmaxPre,
LminSuff * RminPre )
maxPre = max( LmaxPre,
Lprod * RmaxPre,
Lprod * RminPre )
min( LminPre,
Lprod * RmaxPre,
Lprod * RminPre )
maxSuff = max( RmaxSuff,
Rprod * LmaxSuff,
Rprod * LminSuff )
minSuff = min( RminSuff,
Rprod * LmaxSuff,
Rprod * LminSuff )

minPre



totalProd = Rprod * Lprod
return maxProd, maxPre, minPre, maxSuff, minSuff, totalProd

Another part on next page!



more space for previous part...

(b) (10 pt.) What do you think the running time of your algorithm in part (a) is?
(We asked for O(n), but we will give partial credit for slower running times). In
a few (possibly mathematical) sentences, justify your answer.
[We are expecting: A big-Oh running time and an explanation. For your
explanation, writing down a recurrence relation that you algorithm satisfies and
explaining its solution would be an appropriate level of detail. You do not need to
give a formal proof.|

SOLUTION:

The running time is O(n). The running time satisfies the recurrence relation
T'(n) = 2T(n/2) + O(1), because the algorithm breaks up the problem into two
problems of size n/2, and then does O(1) work (taking O(1) maxima of O(1)
things) to combined them. By the Master Method with @ = 2,b = 2,d = 0, the
solution to this recurrence relation is O(n).
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3. (20 pt.) [Proving Stuff!] Let g(n) be defined by:

(n) = 1 n <4
T g(lvah +1 n>a

Prove formally, using induction, that g(n) = O(loglogn). Note: “loglogn” means
log(log(n)), not (logn)?.
[HINT: Use the following inductive hypothesis:

Inductive Hypothesis (for n > 2): g(n) <log,log,n + 1.

|

[We are expecting: A formal proof by induction. Be sure to clearly state your
inductive hypothesis, base case, inductive step, and conclusion.|

SOLUTION:
We follow the hint to come up with our inductive hypothesis.

e Inductive Hypothesis (for n > 2): g(n) < loglogn + 1, where the logs are
base 2.

e Base Case: We establish the base case for n = 2, 3, 4, corresponding to the base
cases in the recursion.

— ¢g(4) =1 and loglog4 =1, so g(4) < loglog4 + 1.

— g(3) =1 and 0 < loglog 3, so ¢g(3) < loglog3 + 1.

— ¢g(2) =1 and 0 = loglog 2, so ¢g(2) < loglog2 + 1.
e Inductive Step: Let n > 4, and suppose that the inductive hypothesis holds
for all m so that 2 < m < n. (Note: we are doing strong induction here). We
want to show that it holds for n, namely that g(n) < loglogn + 1. Notice that

since n > 4, |/n] satisfies 2 < |/n| < n, and thus we can apply the inductive
hypothesis to g(|y/n]). Then we have:

g(n) = g(lvn]) +1
< loglog(|v/n]) +2
< loglog(v/n) + 2

= log(% -log(n)) + 2

= log(1/2) + loglog(n) + 2
= loglog(n) + 1.

This is what we wanted to show, and this establishes the inductive hypothesis for
all n > 2.
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e Conclusion. We conclude that for all n > 2, we have g(n) < loglogn + 1. In
particular, for all n > 4, we have g(n) < 2loglogn (this follows since loglogn > 1
for n > 4. Thus, we conclude that g(n) = O(loglogn), using the definition of
big-Oh with ng =4 and ¢ = 2.

This is the end of the exam!
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This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you want
extra work on this page to be graded, clearly label which question your extra work is for.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.
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This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for.
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