Practice Exam 2 Solution CS161, Fall 2025

Instructions that will appear on the real exam

DO NOT OPEN THE EXAM UNTIL YOU ARE INSTRUCTED TO. (But
of course you can do what you want with this practice exam :)

Answer all of the questions as well as you can. You have one hour.

The exam is non-collaborative; you must complete it on your own. If you have any
clarification questions, please ask the course staff. We cannot provide any hints or
help.

This exam is closed-book, except for up to two double-sided sheets of paper
that you have prepared ahead of time. You can have anything you want written on
these sheets of paper.

Please DO NOT separate pages of your exam. The course staff is not responsible
for finding lost pages, and you may not get credit for a problem if it goes missing.

There are a few pages of extra paper at the back of the exam in case you run out of
room on any problem. If you use them, please clearly indicate on the relevant problem
page that you have used them, and please clearly label any work on the extra pages.

Please make sure to sign out of the roster when handing in your completed exam to
the teaching team.

Please do not discuss the exam until after solutions are posted! (Practice
exam note: Of course feel free to discuss the practice exam solutions with us any time!)

General Advice

If you get stuck on a question or a part, move on and come back to it later. The
questions on this exam have a wide range of difficulty, and you can do well on the
exam even if you don’t get a few questions.

Pay attention to the point values. Don’t spend too much time on questions that are
not worth a lot of points.

There are 100 total points on this exam. There are three problems across ten
pages.

Name and SUNet ID (please print clearly): SOLUTION

This page intentionally blank. Please do not write anything you want graded here.

Honor Code (this will appear on the real exam)

The Honor Code is an undertaking of the Stanford academic community, individually and
collectively. Its purpose is to uphold a culture of academic honesty. Students will support
this culture of academic honesty by neither giving nor accepting unpermitted academic aid
on this examination.

This course is participating in the proctoring pilot overseen by the Academic Integrity
Working Group (AIWG), therefore proctors will be present in the exam room. The purpose
of this pilot is to determine the efficacy of proctoring and develop effective practices for
proctoring in-person exams at Stanford.

Unpermitted Aid on this exam includes but is not limited to the following: collab-
oration with anyone else; reference materials other than your cheat-sheet (see below); and
internet access. (Of course you can do whatever you want on this practice exam; we suggest
that you take it in as close to a test environment as you can though.)

Permitted aid on this exam includes a “cheat-sheet:” two double-sided sheets of paper
with anything written on them, which you have prepared yourself ahead of time.

I acknowledge and attest that I will abide by the Honor Code:

[signed|

Exam Break Sign-out

I pledge that during my exam break:

I will not bring any paper, electronic devices (phone, smart watch, smart glasses, etc),
or aid (permitted or unpermitted) out of or into the exam room.

o [will not communicate with anyone other than the course instructional staff about the
content of the exam.

Signature Confirming

Honor Code Pledge Exit Time | Return Time | Proctor Initial | Length (min)

If you are feeling unwell and are not able to complete the exam, please connect with the
proctor to discuss options.

Good Luck!

This page intentionally blank. Please do not write anything you want graded here.

1. (48 pt.) [Multiple Choice!] For each of the parts below, clearly fill in all of the
answers that are true.

Grading note: In each part below, each of the answers other than “None of the above” are worth
points separately. The “None of the above” option on its own is not worth any points, it is there so
you can indicate that you intentionally didn’t fill in anything. If you fill in both “None of the above”
and any other answer, we will ignore your “None of the above”. If you don’t fill in anything and also
don’t fill in “None of the above”, we will assume you did not complete the problem and you will get

a zero. Ambiguously filled-in answers will be marked as incorrect.

[We are expecting: For each part, clearly fill in answers like this: B, or leave them
blank like this: 0. No justification is required or will be considered when grading.]

(a) (12 pt.) Which of the following are true?
[1 (A) A Red-Black tree storing n items supports INSERT/SEARCH/DELETE

in worst-case time O(logn).

[J (B) A Red-Black tree storing n items is always perfectly balanced (mean-
ing that the height is at most [logn]).

[J (C) Suppose you build a hash table using a universal hash family, to store
n items with n buckets. If you insert an item x multiple times, it may end
up in different buckets each time due to the randomness in the hash family.

[1 (D) Let H be a universal hash family, consisting of functions that map
a universe U of size M > n? down to n buckets. Then for all h € H, there is
some x € U that collides with 2(n) things under h (that is, there are Q(n)
values of y € U with h(x) = h(y)).

[J (E) None of the above

SOLUTION:

(A) is true.

(B) is false. A Red-Black tree has height at most O(logn) (where the constant in
the big-Oh is 2), but not necessarily < [logn].

(C) is false: when we build a hash table from a hash family, we randomly choose
one function h, and use it for the whole time. We don’t re-choose h between

different INSERTS.

(D) is true: this follows from the pigeonhole principle, and/or our discussion in
class about worst-case hash tables.

(b) (12 pt.) Which of the following always take time O(n)?
[J (A) Using RadixSort to sort n integers between 1 and 2" with base n.

0 (B) Running DFS on an arbitrary graph.
[0 (C) Running BFS on a graph with degree at most 7.
]

(D) Running in-order traversal on a Binary Search Tree to output the
elements in sorted order.

[0 (E) None of the above.

SOLUTION:
(A) is false, since the maximum size of the integers is too big. (The running time
is only guaranteed to be O(nlog,(2")), which is O (=))

logy

(B) is false. The running time of DFS is O(n +m), and in this case m may be as

large as n?.

(C) is true. Since the degree is at most 7, there are at most 7n/2 edges, so BFS
takes time O(n +m) = O(n), as m = O(n).
(D) is true: We saw in class that an in-order traversal takes time O(n).

()

(12 pt.) Let G = (V, E) be a directed acyclic graph, and suppose that u,v € V
so that there is a directed edge from u to v. Which of the following must be true?

Note: Below, when we say “run DFS” or “run BFS,” we mean on the whole graph. That is, if
the graph is disconnected or not strongly connected, and there is nowhere for BFS/DFS to go
but you haven’t yet explored all the vertices, start again at an arbitrary vertex until you have

reached them all.

[J (A) If we were to run DFS on G, the finish time of v must be larger than
the finish time for v.

[J (B) Any run of BFS on G must visit u before visiting v.
[J (C) u and v must be in the same strongly connected component of G.

[1 (D) If we were to run DFS on G, then v must be a descendant of u in
the DF'S tree.

[0 (E) None of the above.

SOLUTION:
A is true: we proved this in class when we were analyzing the topological sorting
algorithm

B is false. For example, if we start BF'S at v, it will visit v before w.
C is false. For example, if the graph is just V = {u,v} and E = {(u,v)}, then
there are two SCCs, {u} and {v}.

D is false. For example, if we started DFS at v, then v would be the root and
wouldn’t be a descendant of anything. (It is true that if DFS discovers u before
v, then v would be a descendant of u in the DFS tree).

(12 pt.) Which of the following properties are associated with an algorithmic
problem being wicked?

[J (A) There is not one obvious way to mathematically formalize the prob-
lem.

[J (B) The problem is NP-hard.

[J (C) When testing your problem to see if it will work well, that test will
impact real people.

[J (D) The problem does not have a “correct” answer, only “better” or
“worse” answers, depending on who you ask.

[0 (E) None of the above.

SOLUTION:
A, C, and D are true.

2. (18 pt.) [True or False and Why?] For each of the parts below, decide whether
the statement is true or false. If it is true, give a short explanation (it doesn’t need to
be a formal proof). If it is false, give a counter-example.

[We are expecting: For each part, your answer (T or F), and either an explanation
or a counter-example.|

(a)

(9 pt.) Let G = (V, E) be an undirected, unweighted graph. Say we run BFS on
G, starting from a node s. Let t € V so that t # s.

True or false: Every shortest path from s to t in G appears as a path in the BFS
tree.

SOLUTION:
False. For example, if the graph G is as shown below, then 7" shown below would
be a valid BFS tree. However, the shortest path s — b — t does not appear as a

path in T.
o
-G - @
@ ofko
©

(9 pt.) Let G = (V, E) be a directed, unweighted graph. Suppose that we run
DFS on G, to obtain a DF'S tree T. We say that an edge (u,v) € E is a back edge
if u is a descendant of v in T'.

True or false: G has a directed cycle if and only if any DFS tree has a back edge.

Practice Exam Note: This question might involve a bit more writing than we’d ask
for on the real exam, but we hope that the conceptual difficulty is representative.

SOLUTION:

True. First, suppose that there is a back-edge (u,v) in any DFS tree T. By
definition, u is a descendant of v in T', so there is a path from v to u. The edge
(u,v) completes this path into a directed cycle.

On the other hand, suppose that there is a directed cycle in the graph, with ver-
tices vg,v1,...,v; € V (so, (vo,v1), (v1,02), ..., (ve—1,v¢), (v, v0) € E). Consider
any run of DFS, and suppose without loss of generality that vg € V is the first
vertex in the cycle that DFS visits. (That is, vy is the vertex in the cycle with the
smallest start time; if it is a different vertex instead of vy, we can just re-label the

vertices). Then since there is a path from vy to v;, and v, hasn’t been discovered
yet when vy is discovered, v; must appear as a descendant of vy in the DFS tree
T. But then (v, vg) is a back edge.

10

3. (34 pt.) [How would you do it? (Short Answers)] For each of the tasks below,
say briefly how you would accomplish them. You may (and, hint, probably should)
use any algorithm we have seen in class. If you slightly modify an algorithm we have
seen in class, very clearly indicate what the modification would be.

Below, all graphs have n vertices and m edges.

[We are expecting: For each of the tasks below, a short English description clearly
describing an algorithm. Your description should be clear enough that a CS161 student
who has been keeping up with the course (and the grader) can unambiguously understand
your solution. You do mot need to write pseudo-code, although you may if you
want to. You do not need to justify correctness or the running time.]

(a) (10 pt.) Suppose that G = (V, E) is an unweighted connected graph. Give an
algorithm that takes as input GG and vertices s,t,u € V, and outputs the fastest
way to travel from s to t in the graph, stopping at u along the way. Your algorithm
should run in time O(n + m).

SOLUTION:
Run BFS to find a shortest path from s to u and then from w to ¢, and concatenate
the two paths.

More parts on next page

11

(b)

(10 pt.) Design a data structure that can hold n items and supports the following
operations, each in time O(logn):

o INSERT, SEARCH, and DELETE, as discussed in class
o FINDMIN: Find the item in the array with the minimum key

SOLUTION:

Use a Red-Black Tree. We already saw how to do INSERT/SEARCH/DELETE
in class. To implement FINDMIN, just go all the way to the left in the tree and
return the element you get to when you can’t go left any more.

(4 pt.) [Practice Ezam Note: we’d possibly leave this part off a real exam to keep
the length down, but it’s a good practice problem.] The same as the previous part
(3b), but instead of FINDMIN, your data structure should support SELECT(k) in
time O(logn). Here, SELECT(k) should return the item with the k’th smallest
key.

Hint: In case it matters, to maintain the Red-Black tree property (the details of
which we didn’t cover in class), you only have to do rotations and some other
local pointer manipulations. In particular, if you want to modify a RBTree so
that each node keeps track of information like its depth (how far it is from the
root); height (how far it is from the deepest leaf under it); or size (how many
nodes live in the subtree under it), you can claim this without proof.

SOLUTION:

As with the previous problem, use an RBTree, but modify it so that each node
knows how many elements live in the sub-tree beneath it (including itself). For a
node v, call this v.count. The hint told us that we can do this, so we will.

Then when we are searching for the £’th smallest key, we start at the root r.
Suppose that r’s left child is A and right child is B. If A.count = k — 1, then
return r. If A.count > k — 1, then recurse to find that £’th smallest key under A.
If A.count < k — 1, then recurse to find the £’th smallest thing under B, where
¢ =k — A.count — 1. (This looks a lot like the recursive algorithm we used in the
k-SELECT divide and conquer algorithm from earlier in the quarter, except that
we don’t need to do FINDPIVOT, we can use the tree structure instead).

Another part on next page

12

(d) (10 pt.) Let G = (V, E) be an unweighted, undirected, connected graph. Say
that v € V' is disconnecting if removing v (and all the edges that touch it) would
disconnect G.

Suppose that your friend ran DFS on G, starting from v, and gave you a pointer
to the root of the resulting DFS tree. In time O(1), decide if v is disconnecting.
Note that you have access to this DFS tree (including any meta-information left
over from the DFS run), but not to G itself.

SOLUTION:
If v has at least two children in the DFS tree, then it is disconnecting. Otherwise
it is not.

Not required: To see why this algorithm works, suppose that v is disconnecting.
That means that there is some vertex and some vertex y so that the only paths
from z to y go through v. We claim that and y must live in different sub-trees
under v in the DFS graph. Indeed, if they lived in the same subtree, then there
would be a path from x to y in that subtree that did not involve v. Thus, v must
have at least two children in the DFS tree, one ancestor of x, and one ancestor of
Y.

On the other hand, suppose that v is not disconnecting. Then we claim that v
can only have one child in the DFS tree. Suppose towards a contradiction that
v has two children, = and y. We claim that the only paths from x to y must go
through v. Indeed, suppose without loss of generality the DFS explored x before
y. If there were a path from z to y that did not involve v, DFS would have
gone from z, and then would have eventually gotten to y, before backtracking to
v. So y would have been a descendent of z in the DFS tree, contradicting our
assumption that x and y were both children of v. Thus v can have at most one

child, as desired.

This is the end of the exam!

13

This is the end of the exam! You can use this page for extra work on any problem.
Keep this page attached to the exam packet (whether or not you use it), and if you
want extra work on this page to be graded, clearly label which question your extra work is
for, and make a note on the problem page itself.

14

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.

15

This page is for extra work on any problem. Keep this page attached to the exam
packet (whether or not you use it), and if you want extra work on this page to be graded,
clearly label which question your extra work is for, and make a note on the problem page

itself.

16

