
CS 161
Design and Analysis of Algorithms

Lecture 1:

Logistics, introduction, and multiplication!

The big questions

• Who are we?

• Course staff, students?

• Why are we here?

• Why learn about algorithms?

• What is going on?

• What is this course about?

• Logistics?

• Can we multiply integers?

• And can we do it quickly?

Mary

• Instructor:
• Mary Wootters

Who are we?

• Course Coodinator:

• Amelie Byun

• Embedded EthiCS Team:
• Justin Shin, Jennifer Chien,

Louis Ortiz

• Awesome CAs!

Isabel

Amelie

Justin

Anisha Karan Ly-Ly

SimonSpencerTa-Wei

Will Zayn

• Anisha Palaparthi (Head CA)

• Maya Avital (Embedded EthiCS CA)

• Bradley Moon (Student Liaison)

• Zayn Malhotra

• Ta-Wei Tu

• Mingwei Yang

• Spencer Compton

• Will Fang

• Ziyi Ding

• Ly-Ly Atchariyachanvanit

• Karan Bhasin

• Simon Kim

• Ziyi Ding

• James Cheng

• Xiao Mao

• Andy Dai

• Isabel Sieh

• Auddithio Nag

Xiao Mingwei

Maya

Jennifer

James

Bradley Andy

Louie

Auddithio

Who are you?

• Art Practice

• Bioengineering

• Biology

• Biomedical Data
Science

• Biomedical
Informatics

• Chemical Eng.

• Chemistry

• Civil & Env. Eng.

• Classics

• Communication

• CME

• Computer
Science

• Creative Writing

• Data Science

• Earth Systems

• Economics

• Education

• EE

• Engineering

• Hum Bio

• International
Relations

• Linguistics

• Math

• Music

• MS&E

• Mech. Eng.

• Physics

• Political Science

• Sociology

• Statistics

• Symbolic Systems

• Theater and Perf.
Studies

• Undeclared

Concentrating in:

• Freshman

• Sophomores

• Juniors

• Seniors

• MA/MS
Students

• PhD Students

• NDO Students

Why are we here?

• I’m here because I’m super excited about algorithms!

Why are you here?

• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

• CS161 is a required course.

Why is CS161 required?

• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

You are better equipped to

answer this question than I am,

but I’ll give it a go anyway…

Algorithms are fundamental

Operating Systems (CS 140)

Compilers (CS 143)

Networking (CS 144)

Machine learning (CS 229) Cryptography (CS 255)

Computational Biology (CS 262)

The

Algorithmic

Lens

Algorithms are useful

• All those things without

the course numbers.

• As inputs get bigger and

bigger, having good

algorithms becomes more

and more important!

Algorithms are fun!

• Algorithm design is both an art and a science.

• Many surprises!

• Many exciting research questions!

What’s going on?

• Course goals/overview

• Logistics

Course goals

• The design and analysis of algorithms

• These go hand-in-hand

• In this course you will learn:

• Design: Flesh out an “algorithmic toolkit”
• Analysis: Learn to think analytically about algorithms

• Communication: Learn to communicate clearly about
algorithms

Roadmap

Graphs!

Asymptotic

Analysis

Dynamic

ProgrammingGreedy Algs

The

Future!

More detailed schedule on the website!

Our guiding questions:

Does it work?

Is it fast?

Can I do better?

Our internal monologue…

Does it work?

Is it fast?

Can I do better?

Plucky the

Pedantic Penguin

Lucky the

Lackadaisical Lemur

Detail-oriented

Precise

Rigorous

Big-picture

Intuitive

Hand-wavey

Dude, this is just like
that other time. If you

do the thing and the
stuff like you did then,

it’ll totally work real fast!

What exactly do we

mean by better? And

what about that corner case? Shouldn’t we be
zero-indexing?

Both sides are necessary!

The bigger picture

• Does it work?

• Is it fast?

• Can I do better?

• Should it work?

• Should it be fast?

Embedded EthiCS

• Throughout the course, we will take a step back
and focus on how algorithm design can affect
society, and the ethical implications of that.

• Embedded EthiCS team: Jennifer, Justin and Louie!

Welcome to

Embedded Ethics!

Dr. Jennifer Chien

Dr. Justin Shin

Louie Ortiz

Which one

should I build?

I love helping

people! <3

HATE. LET ME TELL

YOU HOW MUCH I'VE

COME TO HATE YOU

SINCE I BEGAN TO

LIVE. THERE ARE

387.44 MILLION

MILES OF PRINTED

CIRCUITS IN WAFER

THIN LAYERS THAT

FILL MY COMPLEX. IF

THE WORD HATE WAS

ENGRAVED ON EACH

NANOANGSTROM OF

THOSE HUNDREDS OF

MILLIONS OF MILES

IT WOULD NOT EQUAL

ONE ONE-BILLIONTH

OF THE HATE I FEEL

FOR HUMANS AT THIS

MICRO-INSTANT FOR

YOU. HATE. HATE.

ft. Emery the Ethical Emu

Jennifer

• I majored in Computer Science, with
minors in Math and Statistics

• Then I got my PhD in Computer
Science, focusing on AI Ethics

• I spend a lot of time thinking about:
• What are the goals of a system?

• What are the limitations of purely
technical approaches?

• How do we design/intervene to protect
user agency?

Justin

• I double majored in Mathematics and
Philosophy as an undergrad

• Then got my PhD in the History and
Philosophy of Science

• I am thinking about…
• What kinds of statistical evidence should be

accepted as evidence of discrimination in
courts?

• How should we handle expert testimony from
scientists in cases of controversial science?

• How do techno-labor revolutions change how
we value work?

Louie

• BA in Data Science with a
concentration in Philosophy

• 2nd year Research Associate with the
Rising Scholars program

• I spend my time thinking about:
• How do we teach ethics effectively (as an

educational intervention) in technical
fields?

• How do students prioritize ethics against
other principles when building
technology?

• Do demographic characteristics shape our
moral agency?

mailto:https://ethicsinsociety.stanford.edu/tech-ethics/career-pathways-professional-development/tech-ethics-policy-rising-scholars-program

What is Embedded Ethics?

Spielberg, S. (1993). Jurassic Park. Universal Pictures.

Don’t worry Dr.
Ian Malcolm, we

will stop to think

if we should!

Embedded Ethics: Training the next generation of computer scientists

to “consider ethical issues from the outset rather than building
technology and letting problems surface downstream” by integrating

skills and habits of ethical analysis throughout the Stanford Computer

Science curriculum.

What do we teach?

• Issue spotting and ethical sensitivity

• Recognizing values in design choices

• Developing language to talk about moral choices

• Professional responsibilities of computer scientists
& software engineers

• Important topics in technology ethics: bias &
fairness, inequality, privacy, surveillance, data
control & consent, trust, disinformation,
participatory design, concentration of power.

Turn a real
world problem
into a formal
(math) problem

Use an
algorithm to
solve the
problem

Happiness
ensues

How do we make sure we

aren’t losing important features
of the real world problem

when we formalize it?

Turn a real
world problem
into a formal
(math) problem

Use an
algorithm to
solve the
problem

Happiness
ensues

By the time you finish CS161,

you will have a tool kit stuffed

with algorithms!

Which one is right for the job?

Turn a real
world problem
into a formal
(math) problem

Use an
algorithm to
solve the
problem

Happiness
ensues

Disclaimer:

happiness not a

guaranteed outcome

Our nightmares:

Here’s the first algorithm I
thought of for this problem

– it works okay for me!

Let’s deploy it at scale!!

Haha! Here’s a use case you didn’t think of!
Your nice little algorithm isn’t so socially beneficial

now, is it?

This gerrymandering

algorithm is really inefficient

– what if we made it faster

and bundled it with an easy-

to-use software package?

*Emery the Ethical Emu sleeps standing up ☺

Wait! That’s not
what it’s for!

Our guiding questions:

Does it work?

Is it fast?

Can I do better?

Can I do it right?

Thank you!
You can always email us at drchien@stanford.edu
justinjs@stanford.edu and louieortiz@stanford.edu

We are happy to talk! About ethics, research, careers, pets…
Thanks to Katie Creel and the Embedded Ethics program for slides!

mailto:drchien@stanford.edu
mailto:justinjs@stanford.edu
mailto:stanford.edu

Course elements and resources

• Course website:

• cs161-stanford.github.io

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed

• Right here (Bishop Auditorium), T/Th, 9-10:20am!

• Resources available:

• Slides, Videos, Book, IPython notebooks

Lectures

IPython notebooks

have implementation

details that slides may

omit.

Slides are the

slides from

lecture.

Videos from

lecture are

available!
Textbook (and occasional

hand-outs) have mathy

details that slides may

omit

(required)

(optional)

How to get the most out of lectures
• During lecture:

• Show up or tune in, ask questions.

• Engage with in-class questions.

• Before lecture:
• Do pre-lecture exercises on the website.

• After lecture:
• Go through the exercises on the slides.

• Do the reading
• either before or after lecture, whatever works best for you.

• do not wait to “catch up” the week before the exam.

Siggi the Studious Stork

(recommended exercises)

Ollie the Over-achieving Ostrich

(challenge questions)

Think-Pair-Share

Terrapins (in-class

questions)

Homework!

• Weekly assignments HW1-HW7

• Due Fridays at 11:59pm, HW1 due Oct 3

• Done in groups of up to 3.

• Special HW0!

• Goal: assess your background and pre-requisites

• Graded for completion

• Do this one on your own

• Out now, due TUESDAY September 30 before class!

Aside: Late days

• You have six late days to use on HW1 through HW7.

• See website for more details

• LATE DAYS ARE FOR EMERGENCIES. Do not ask us
for an extension if you have an emergency. That’s
what late days are for.

Exams

• Three exams

• Exam 1: Thursday 10/16, in class.

• Exam 2: Thursday 11/6, in class.

• Final Exam: Wednesday 12/10, 8:30am-11:30am

• We will not have scheduled alternate exams.

• If you know you cannot take an exam, you should drop this
class and take it in a different quarter.

• We are participating in the AIWG proctoring pilot

• See website for details

Course elements and resources

• Course website:

• cs161-stanford.github.io

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed

Talk to us!
• Join Ed:

• You should be auto-enrolled (may take some time to sync)

• Course announcements will be posted there

• Discuss material with course staff and classmates!

• Office hours:
• See course website for schedule

• Start in week 2

• Sections:
• See course website for schedule; one section is recorded

• Technically optional, but highly recommended!

• Extra practice with the material, example problems, etc.

• High-Resolution Course Feedback:
• Anonymous weekly feedback for the teaching team

• You’ll get a few emails randomly during the quarter asking for
feedback. Please respond!

Talk to each other!

• Collaboration on HW

• Answer your peers’ questions on Ed!
• We will host Homework Parties.

• Mondays 5:30-7:30pm, starting Week 2

• There will be snacks!

Course elements and resources

• Course website:

• cs161-stanford.github.io

• Lectures

• Homework

• Exams

• Office hours, Sections, and Ed

Course Policies

• Course policies are listed on the website.

• Collaboration Policy, LLM Policy, Academic Honesty, ...

• Read them and adhere to them.

Bug bounty!

• We hope all course materials will be
bug-free.

• Howover, I sometmes maek typos.

• If you find a typo (that affects
understanding*) on slides, IPython
notebooks, Section material or PSETs:

• Let us know! (Post on Ed).

• The first person to catch a bug gets a
bonus point.

*So, typos lke thees onse don’t count, although please
point those out too. Typos like 2 + 2 = 5 do count, as does

pointing out that we omitted some crucial information.

Bug Bounty Hunter

Everyone can succeed in this class!

1. Work hard

2. Work smart

3. Ask for help

The big questions

• Who are we?

• Professor, TA’s, students?
• Why are we here?

• Why learn about algorithms?

• What is going on?

• What is this course about?

• Logistics?

• Can we multiply integers?

• And can we do it quickly?

For the rest of today

• Karatsuba Integer Multiplication

• Algorithmic Technique:

• Divide and conquer

• Algorithmic Analysis tool:

• Intro to asymptotic analysis

Let’s start at the beginning

What was the first “Algorithm”?
• The word “Algorithm” comes from the

name “Al-Khwarizmi”
• 9th century scholar who worked in Baghdad

during the Abbassid Caliphate.

• Among many other contributions in
mathematics, astronomy, and geography,
he wrote a book about how to multiply
with Arabic numerals.

• His ideas came to Europe in the 12th
century, and gave rise to the word
“Algorithm”
• Originally, “Algorisme” [old French] referred

to just the Arabic number system

• Eventually it came to mean “Algorithm” as
we know today.

Dixit algorizmi

(so says Al-Khwarizmi)

Al-Khwarizmi

An algorithm for multiplication

was kind of a big deal

XLIV × XCVII = ?
44

97x

Integer Multiplication

44

97x

Integer Multiplication

1234567895931413

4563823520395533x

Integer Multiplication

1233925720752752384623764283568364918374523856298

4562323582342395285623467235019130750135350013753x

???

n

About 𝑛2 one-digit operations

(How many one-digit operations?)

Think-pair-share Terrapins

Plucky the

Pedantic Penguin

At most 𝑛2 multiplications,

and then at most 𝑛2 additions (for carries)

and then I have to add n different 2n-digit numbers…

How fast is the grade-school

multiplication algorithm?

Big-Oh Notation

• We say that Grade-School Multiplication

 “runs in time O(n2)”

• Formal definition coming next time!

• Informally, big-Oh notation tells us how the running
time scales with the size of the input.

Implemented in Python, on my laptop

highly non-optimized

Looks like it’s roughly
Tlaptop(n) = 0.0063 n2 – 0.5 n + 12.7 ms...

The runtime “scales like” n2

Implemented by hand

Some other

quadratic

function of n

The runtime still “scales like” n2

Implemented by hand

Some other

quadratic

function of n

Tlaptop(n) ≈
0.0063 n2 – 0.5 n + 12.7 ms

The runtime still “scales like” n2

Why is big-Oh notation meaningful?

≈ .0063𝑛2

Why is big-Oh notation meaningful?

≈ .0063𝑛2

≈ 𝑛1.610 + 100

Wizard’s algorithm

Let n get bigger…

≈ .0063𝑛2

≈ 𝑛1.610 + 100

T
im

e
 (

m
s)

Wizard’s algorithm

Take-away

• An algorithm that runs in time O(n1.6) is “better”
than an an algorithm that runs in time O(n2).

• So the question is…

Can we do better?

𝑛

𝑛2
Can we multiply n-digit integers

faster than 𝑂 𝑛2 ?

Let’s dig in to our algorithmic toolkit…

Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller

problem

Smaller

problem

Yet smaller

problem

Yet smaller

problem

Yet smaller

problem

Yet smaller

problem

Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= (12×100 + 34) (56×100 + 78)

= (12 × 56)10000 + (34 × 56 + 12 × 78)100 + (34 × 78)

1 2 3 4

One 4-digit multiply Four 2-digit multiplies

More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even

Divide and conquer algorithm
not very precisely…

• If n=1:

• Return xy

• Write 𝑥 = 𝑎 10𝑛2 + 𝑏
• Write 𝑦 = 𝑐 10𝑛2 + 𝑑
• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:

• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:

• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦):

a, b, c, d are

n/2-digit numbers

Base case: I’ve memorized my
1-digit multiplication tables…

x,y are n-digit numbers
(Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode

more detailed! How

should we handle odd n?

How should we implement

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!

Think-Pair-Share

• We saw that this 4-digit multiplication problem
broke up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication
problems, how many 1-digit multiplications do you
end up with total?

1234 × 5678

Recursion Tree

4 digits

2 digits

1

digit

2 digits 2 digits 2 digits

1

digit
1

digit

1

digit
1

digit

1

digit
1

digit

1

digit
1

digit

1

digit
1

digit

1

digit

1

digit

1

digit
1

digit

1

digit

16 one-digit

multiplies!

What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?

1. Try it.

2. Try to understand it analytically.

1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about

running time?

Maybe one implementation

is slicker than the other?

Maybe if we were to run it

to n=10000, things would

look different.

Doesn’t look too good
but hard to tell…

Something funny is happening at powers of 2…

2. Try to understand the running
time analytically

• Proof by meta-reasoning:

It must be faster than the grade school
algorithm, because we are learning it in

an algorithms class.

Not sound logic!

Plucky the Pedantic Penguin

2. Try to understand the running
time analytically

Think-Pair-Share:
• We saw that multiplying 4-digit numbers resulted in 16

one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?

Recursion Tree

8 digits

4 digits

2

digit

4 digits 4 digits 4 digits

2

digit
2

digit

2

digit
2

digit

2

digit
2

digit

2

digit
2

digit

2

digit
2

digit

2

digit

2

digit

2

digit
2

digit

2

digit

64 = 43
one-digit

multiplies!

1

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1

2. Try to understand the running
time analytically

Claim:

We end up doing about n2 one-digit
multiplications⇒

The running time of this algorithm is

AT LEAST n2 operations.

There are n2 1-digit problems

1 problem

of size n

4 problems

of size n/2

4t problems

of size n/2t

____ problems

of size 1

…

• The tree has log2(𝑛) levelslog2(𝑛) is the number of

times you cut n in half to

get to down to 1.

• So at level

 t = log2(𝑛)
 we get…

 4log2 𝑛 =𝑛log2 4 = 𝑛2
problems of size 1.

…

Note: this is just a

cartoon – I’m not
going to draw all 4t

circles!

That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛2 …

𝑛

𝑛2

But wait!!

Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things

Karatsuba integer multiplication

• Recursively compute these THREE things:

• ac

• bd

• (a+b)(c+d)
(a+b)(c+d) = ac + bd + bc + ad

Subtract these off

get this

• Assemble the product:

How would this work?

• If n=1:

• Return xy

• Write 𝑥 = 𝑎 10𝑛2 + 𝑏 and 𝑦 = 𝑐 10𝑛2 + 𝑑
• ac = Multiply(a, c)

• bd = Multiply(b, d)

• z = Multiply(a+b, c+d)

• xy = ac 10n + (z – ac - bd) 10n/2 + bd

• Return xy

Multiply(𝑥, 𝑦):

a, b, c, d are

n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython

notebook for detailed code. Also,

still assume n is a power of 2.)

What’s the running time?
1 problem

of size n

3 problems

of size n/2

3t problems

of size n/2t

____ problems

of size 1

…

• The tree has log2(𝑛) levelslog2(𝑛) is the number of times you

cut n in half to get to down to 1.

• So at level

 t = log2(𝑛)
 we get…3log2 𝑛 = 𝑛log2 3 ≈ 𝑛1.6

problems of size 1.

𝑛1.6 We aren’t accounting for the
work at the higher levels!

But we’ll see later that this
turns out to be okay.

Note: this is just a

cartoon – I’m not
going to draw all 3t

circles!

…

This is much better!

𝑛2

𝑛1.6
𝑛

We can even see it in real life!

Can we do better?

• Toom-Cook (1963): instead of breaking into three n/2-
sized problems, break into five n/3-sized problems.
• Runs in time O 𝑛1.465

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛)

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 2O(log∗ 𝑛)

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛)

Ollie the Over-achieving Ostrich

Try to figure out how to break

up an n-sized problem into five

n/3-sized problems! (Hint: start

with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an

n-sized problem into five

n/3-sized problems, where

does the 1.465 come from?

[This is just for fun, you

don’t need to know
these algorithms!]

What we just saw

• Karatsuba Integer Multiplication

• Algorithmic Technique:

• Divide and conquer

• Algorithmic Analysis tool:

• Intro to asymptotic analysis

The big questions

• Who are we?

• Professor, TA’s, students?
• Why are we here?

• Why learn about algorithms?

• What is going on?

• What is this course about?

• Logistics?

• Can we multiply integers?

• And can we do it quickly?

• Wrap-up

Wrap up

• https://cs161-stanford.github.io/

• Algorithms are fundamental, useful and fun!

• In this course, we will develop both algorithmic
intuition and algorithmic technical chops

• Karatsuba Integer Multiplication:

• You can do better than grade school multiplication!

• Example of divide-and-conquer in action

• Informal demonstration of asymptotic analysis

https://cs161-stanford.github.io/
https://cs161-stanford.github.io/
https://cs161-stanford.github.io/
https://cs161-stanford.github.io/

• Sorting!

• Asymptotics and (formal) Big-Oh notation

• Divide and Conquer some more

Next time

BEFORE Next time

• Pre-lecture exercise! On the course website!

• Check out Ed!

• Get started on HW0! (On Gradescope)

	Slide 1: CS 161 Design and Analysis of Algorithms
	Slide 2: The big questions
	Slide 3: Who are we?
	Slide 4: Who are you?
	Slide 5: Why are we here?
	Slide 6: Why are you here?
	Slide 7: Algorithms are fundamental
	Slide 8: Algorithms are useful
	Slide 9: Algorithms are fun!
	Slide 10: What’s going on?
	Slide 11: Course goals
	Slide 12: Roadmap
	Slide 13: Our guiding questions:
	Slide 14: Our internal monologue…
	Slide 15: The bigger picture
	Slide 16: Embedded EthiCS
	Slide 17: Welcome to Embedded Ethics!
	Slide 18: Jennifer
	Slide 19: Justin
	Slide 20: Louie
	Slide 21: What is Embedded Ethics?
	Slide 22: What do we teach?
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Our nightmares:
	Slide 27: Our guiding questions:
	Slide 28: Thank you!
	Slide 29: Course elements and resources
	Slide 30: Lectures
	Slide 31: How to get the most out of lectures
	Slide 34: Homework!
	Slide 35: Aside: Late days
	Slide 37: Exams
	Slide 38: Course elements and resources
	Slide 39: Talk to us!
	Slide 40: Talk to each other!
	Slide 41: Course elements and resources
	Slide 42: Course Policies
	Slide 46: Bug bounty!
	Slide 49: Everyone can succeed in this class!
	Slide 50: The big questions
	Slide 51: For the rest of today
	Slide 52: Let’s start at the beginning
	Slide 53: What was the first “Algorithm”?
	Slide 54: An algorithm for multiplication was kind of a big deal
	Slide 55: Integer Multiplication
	Slide 56: Integer Multiplication
	Slide 57: Integer Multiplication
	Slide 58: Big-Oh Notation
	Slide 59: Implemented in Python, on my laptop
	Slide 60: Implemented by hand
	Slide 61: Implemented by hand
	Slide 62: Why is big-Oh notation meaningful?
	Slide 63: Why is big-Oh notation meaningful?
	Slide 64: Let n get bigger…
	Slide 65: Take-away
	Slide 66: Can we do better?
	Slide 67: Let’s dig in to our algorithmic toolkit…
	Slide 68: Divide and conquer
	Slide 69: Divide and conquer for multiplication
	Slide 70: More generally
	Slide 71: Divide and conquer algorithm not very precisely…
	Slide 72: Think-Pair-Share
	Slide 73: Recursion Tree
	Slide 74: What is the running time?
	Slide 75: 1. Try it.
	Slide 76: 2. Try to understand the running time analytically
	Slide 77: 2. Try to understand the running time analytically
	Slide 78: Recursion Tree
	Slide 79: 2. Try to understand the running time analytically
	Slide 81: There are n2 1-digit problems
	Slide 82: That’s a bit disappointing All that work and still (at least) cap O open paren n squared , , close paren …
	Slide 83: Divide and conquer can actually make progress
	Slide 84: Karatsuba integer multiplication
	Slide 85: How would this work?
	Slide 86: What’s the running time?
	Slide 87: This is much better!
	Slide 88: We can even see it in real life!
	Slide 89: Can we do better?
	Slide 90: What we just saw
	Slide 91: The big questions
	Slide 92: Wrap up
	Slide 93: Next time

