
Lecture 2
Asymptotic Notation, 

Worst-Case Analysis, and MergeSort



Announcements

• HW0 Due Tuesday!

• HW1 out soon – due a week from Friday.

• Homework Party!  

• Monday 5:30-7:30pm (see website / Ed announcement for 
details)

• There will be food! 

• Sections!  

• Start today!  Check out website for schedule/locations

• One section will be recorded!

• Check the exam schedule and your calendar.

• If you cannot take the exams, you should not take this class!



Last time

• Algorithms are awesome!

• Our motivating questions: 

• Does it work?

• Is it fast?

• Can I do better? 

• Karatsuba integer multiplication

• Example of “Divide and Conquer”
• Not-so-rigorous analysis

Philosophy

Technical content

Plucky the pedantic 

penguin 

Lucky the 

lackadaisical lemur

Ollie the 

over-achieving ostrich

Siggi the 

studious stork

Cast

Think-Pair-Share 

Terrapins

Emery the 

Ethical Emu



Today

• We are going to ask:

• Does it work?

• Is it fast?

• We’ll start to see how to answer these by looking at 
some examples of sorting algorithms.

• InsertionSort

• MergeSort

SortingHatSort not discussed



The Plan

• Sorting!

• Worst-case analyisis 

• InsertionSort: Does it work?

• Asymptotic Analysis

• InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?



Sorting

• Important primitive

• For today, we’ll pretend all elements are distinct.

6 4 3 8 1 5 2 7

1 2 3 4 5 6 7 8

Length of the list is n



I hope everyone did the 

pre-lecture exercise!

What was the 
mystery sort 
algorithm?

1. MergeSort

2. QuickSort

3. InsertionSort

4. BogoSort

def mysteryAlgorithmTwo(A):    
   for i in range(1,len(A)):  

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):    

  for x in A:    

      B = [None for i in range(len(A))] 

      for i in range(len(B)):            

          if B[i] == None or B[i] > x:    

              j = len(B)-1                

              while j > i:

                  B[j] = B[j-1]           

                  j -= 1

              B[i] = x                

              break 

       return B



I hope everyone did the 

pre-lecture exercise!

What was the 
mystery sort 
algorithm?

1. MergeSort

2. QuickSort

3. InsertionSort

4. BogoSort

def MysteryAlgorithmTwo(A):    
   for i in range(1,len(A)):  

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):    

  for x in A:    

      B = [None for i in range(len(A))] 

      for i in range(len(B)):            

          if B[i] == None or B[i] > x:    

              j = len(B)-1                

              while j > i:

                  B[j] = B[j-1]           

                  j -= 1

              B[i] = x                

              break 

       return B



InsertionSort 
example

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

Start by moving A[1] toward 

the beginning of the list until 

you find something smaller 

(or can’t go any further):

Then move A[2]:

Then move A[3]:

Then move A[4]:

Then we are done!

46 3 8 5



Insertion Sort

1. Does it work?

2. Is it fast?

Plucky the 

Pedantic Penguin

What does that 

mean???



The Plan

• InsertionSort recap

• Worst-case Analysis 

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?



Claim: InsertionSort “works”

• “Proof:” It just worked in this example:

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

46 3 8 5

Sorted!



Claim: InsertionSort “works”

• “Proof:” I did it on a bunch of random lists and it 
always worked:



What does it mean to “work”?

• Is it enough to be correct on only one input?

• Is it enough to be correct on most inputs?

• In this class, we will use worst-case analysis: 

• An algorithm must be correct on all possible inputs.

• The running time of an algorithm is the worst possible 
running time over all inputs.



Worst-case analysis

• Pros: very strong guarantee

• Cons: very strong guarantee

Algorithm 

designer

Algorithm:

  Do the thing

  Do the stuff

  Return the answer

Here is my algorithm!

Here is an input!

(Which I designed 

to be terrible for 

your algorithm!)

Think of it like a game: Worst-case analysis guarantee: 

Algorithm should work (and be 

fast) on that worst-case input.



Insertion Sort

1. Does it work?

2. Is it fast?

• Okay, so it’s pretty obvious that it works.

• HOWEVER!  In the future it won’t be so 
obvious, so let’s take some time now to 
see how we would prove this rigorously.



Why does this work?

• Say you have a sorted list,                                  ,  and 

another element         .

• Insert         right after the largest thing that’s still 

smaller than        .  (Aka, right after        ). 

• Then you get a sorted list:

43 6 8

5

5

43 6 85

5 4



So just use this logic at every step.

The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] means 

that [4,6] becomes a sorted list.

The first two elements, [4,6], make up a 

sorted list.

The first three elements, [3,4,6], make up a 

sorted list.

So correctly inserting 3 into the list [4,6] means 

that [3,4,6] becomes a sorted list.

So correctly inserting 8 into the list [3,4,6] means 

that [3,4,6,8] becomes a sorted list.

The first four elements, [3,4,6,8], make up a 

sorted list.

46 3 8 54 3 8 5

64 3 8 5

64 3 8 5

4 63 8 5

43 6 8 5

43 6 85

43 6 8 5

43 6 8 5

So correctly inserting 5 into the list [3,4,6,8] 

means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!



This sounds like a job for…

Proof By 
Induction!



There is a handout with details!

• See website!



Outline of a proof by induction

• Inductive Hypothesis:  

•  

• Base case:

•  

• Inductive step:  

•  

•  

• Conclusion: 

•  

•  

•  

•  

The first two elements, [4,6], make up a 

sorted list.

So correctly inserting 3 into the list [4,6] means 

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was 

iteration i=2.

Let A be a list of length n 



Outline of a proof by induction

• Inductive Hypothesis (inducting on 𝑖):  

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).

• Base case:

•  

• Inductive step:  

•  

•  

• Conclusion: 

•  

•  

•  

•  

The first two elements, [4,6], make up a 

sorted list.

So correctly inserting 3 into the list [4,6] means 

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was 

iteration i=2.

Let A be a list of length n 



Outline of a proof by induction

• Inductive Hypothesis (inducting on 𝑖):   

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).

• Base case (i=0):  

• A[:1] is sorted at the end of the 0’th iteration. ✓
• Inductive step:  

• For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it holds for i=k.

• Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k

• Conclusion: 

• The inductive hypothesis holds for i = 0, 1, …, n-1.

• In particular, it holds for i=n-1.

• A[:n] is sorted at the end of the n-1’st iteration 

• Aka, A is sorted at the end of the algorithm!  ✓
The first two elements, [4,6], make up a 

sorted list.

So correctly inserting 3 into the list [4,6] means 

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5

This logic 

(see handout for details)

This was 

iteration i=2.

Let A be a list of length n 



Aside: proofs by induction

• We’re gonna see/do/skip over a lot of them.

• I’m assuming you’re comfortable with them from CS103.
• When you assume…

• If that went by too fast and was confusing:

• Go to Office Hours / Section

• Lecture 2 Handout

• Book (appendix A)

• Ian Tullis’s notes (in the Resources tab)
• Office Hours

Make sure you really 

understand the argument on 

the previous slide!  Check 

out the handout for a more 

formal write-up, and go to 

office hours if you have 

questions!

Siggi the Studious Stork



What have we learned?

• In this class we will use worst-case analysis:

• We assume that a “bad guy” comes up with a worst-case 
input for our algorithm, and we measure performance 
on that worst-case input.

• With this definition, InsertionSort “works”
• Proof by induction!



The Plan

• InsertionSort recap

• Worst-case Analysis 

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?



How fast is InsertionSort?

• This fast:

I dunno…let’s 
just try it out!



Issues with this answer?

• The “same” algorithm can be 
slower or faster depending 
on  the implementations.

• It can also be slower or 
faster depending on the 
hardware that we run it on.

• It might also be slower or 
faster depending on the 
inputs we use.

• What if n=2000?

With this answer, 

“running time” isn’t 
even well-defined!



How fast is InsertionSort?

Let’s count the number of operations!

def InsertionSort(A):    
   for i in range(1,len(A)):  

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

By my count*…
• 2𝑛2 − 𝑛 − 1 variable assignments

• 2𝑛2 − 𝑛 − 1 increments/decrements

• 2𝑛2 − 4𝑛 + 1 comparisons

• … *Do not pay attention to these formulas, they do not matter.  

Also not valid for bug bounty points.



Issues with this answer?

• It’s very tedious!
• Might be slightly 

different for slightly 
different 
implementations. 

• In order to use this to 
understand running 
time, I need to know 
how long each operation 
takes, plus a whole 
bunch of other stuff…

Counting individual 

operations is a lot of work and 

doesn’t seem very helpful!

Lucky the lackadaisical lemur

def InsertionSort(A):    
   for i in range(1,len(A)):  

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current



In this class we will use…

• Big-Oh notation!

• Gives us a meaningful way to talk about the 
running time of an algorithm, independent of 
programming language, computing platform, etc., 
without having to count all the operations.



Main idea:

Focus on how the runtime scales with n (the input size). 

Number of operations
Asymptotic Running 

Time110 ⋅ 𝑛2 + 100 𝑂 𝑛20.063 ⋅ 𝑛2 − .5 𝑛 + 12.7 𝑂 𝑛2
100 ⋅ 𝑛1.5 − 1010000 𝑛 𝑂 𝑛1.5

11 ⋅ 𝑛 log 𝑛 + 1 𝑂 𝑛 log 𝑛 We say this algorithm is 

“asymptotically faster” 
than the others.

(Only pay attention to the largest 

function of n that appears.)Some examples…



Why is this a good idea?

• Suppose the running time of an algorithm is:𝑇 𝑛 = 10𝑛2 + 3𝑛 + 7   ms

This constant factor of 10 

depends a lot on my 

computing platform… These lower-order 

terms don’t really 
matter as n gets large.

We’re just left with the n2 term!  

That’s what’s meaningful.  



Pros and Cons of Asymptotic Analysis

• Abstracts away from 
hardware- and language-
specific issues.
• Makes algorithm analysis 

much more tractable.
• Allows us to meaningfully 

compare how algorithms will 
perform on large inputs.

• Only makes sense if n is 

large (compared to the 

constant factors).

Pros: Cons:

1000000000 n 

is “better” than n2 ?!?!



Informal definition for O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛  be functions of positive integers.

• Think of 𝑇 𝑛  as  a runtime: positive and increasing in n.

• We say “𝑇 𝑛  is 𝑂 𝑔 𝑛 ” if: 
for large enough n,  𝑇 𝑛  is at most some constant multiple of 𝑔 𝑛 .

Here, “constant” means “some number 
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”



Example2𝑛2 + 10 = 𝑂 𝑛2 for large enough n,  𝑇 𝑛  is at most some constant 

multiple of 𝑔 𝑛 .



Example2𝑛2 + 10 = 𝑂 𝑛2 for large enough n,  𝑇 𝑛  is at most some constant 

multiple of 𝑔 𝑛 .



Example2𝑛2 + 10 = 𝑂 𝑛2
3𝑔(𝑛)  =  3𝑛2

for large enough n,  𝑇 𝑛  is at most some constant 

multiple of 𝑔 𝑛 .



Example2𝑛2 + 10 = 𝑂 𝑛2

𝑛 = 4

for large enough n,  𝑇 𝑛  is at most some constant 

multiple of 𝑔 𝑛 .

3𝑔(𝑛)  =  3𝑛2



Formal definition of O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛  be functions of positive integers.

• Think of 𝑇 𝑛  as  a runtime: positive and increasing in n.

• Formally, 𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)“There exists”

“For all”

“such that”

“If and only if”



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
(Choose c=3)

3𝑔(𝑛)  =  3𝑛2



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
(Choose n0=4)

(Choose c=3)

3𝑔(𝑛)  =  3𝑛2



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
Formally:
• Choose 𝑐 =  3
• Choose 𝑛0 =  4
• Then:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2

3𝑔(𝑛)  =  3𝑛2

We can see that this is 

true on the graph, or 

prove it with algebra:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2 ∀𝑛 ≥ 4, 10 ≤ 𝑛2⇔ ∀𝑛 ≥ 4, 3.162 ≤ 𝑛⇔



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
3𝑔(𝑛)  =  3𝑛2

Q: Why did we pick

 𝑐 = 3, 𝑛0 = 4?  Why 

is this the “right” way 
to choose them?

A: There’s not one 
“right” way!

Formally:
• Choose 𝑐 =  3
• Choose 𝑛0 =  4
• Then:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2



𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Same example2𝑛2 + 10 = 𝑂 𝑛2
Formally:
• Choose 𝑐 =  7
• Choose 𝑛0 =  2
• Then:∀𝑛 ≥ 2, 2𝑛2 + 10 ≤ 7 ⋅ 𝑛2

7𝑔(𝑛)  =  7𝑛2

Choose 𝑛0 = 2
There’s not a 

"correct” choice of 𝑐 

and 𝑛0!  
As long as you can find any 𝑐, 𝑛0 

that work, you’ll have shown that 𝑇(𝑛) = 𝑂(𝑔 𝑛 )



What about:𝑛 =  𝑂 𝑛2 ? 𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



O(…) is an upper bound:𝑛 =  𝑂(𝑛2) 𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)
• Choose c = 1

• Choose n0 = 1

• Then∀𝑛 ≥ 1, 𝑛 ≤ 𝑛2
𝑔 𝑛 = 𝑛2

𝑇(𝑛)  =  𝑛



Ω(…) means a lower bound

• We say “𝑇 𝑛  is Ω 𝑔 𝑛 ” if, for large enough n, 𝑇 𝑛  is at least as big as a constant multiple of 𝑔 𝑛 .

• Formally, 𝑇 𝑛 = Ω 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛
Switched these!!



Example𝑛 log2 𝑛 = Ω 3𝑛 𝑇 𝑛 = Ω 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛



Example𝑛 log2 𝑛 = Ω 3𝑛
• Choose 𝑐 =  1/3
• Choose 𝑛0 =  2
• Then

𝑇 𝑛 = Ω 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

∀𝑛 ≥ 2, 3𝑛3 ≤ 𝑛 log2 𝑛



Θ(…) means both!

•We say “𝑇 𝑛  is Θ 𝑔(𝑛) ” iff both:

 𝑇 𝑛 = 𝑂 𝑔 𝑛
and 

 𝑇 𝑛 = Ω 𝑔 𝑛



Non-Example:𝑛2is not O 𝑛
• Proof by contradiction:  

• Suppose that 𝑛2 = 𝑂 𝑛 .  
• Then there is some positive 𝑐 and 𝑛0 so that:∀𝑛 ≥ 𝑛0, 𝑛2 ≤ 𝑐 ⋅ 𝑛
• Divide both sides by n:∀𝑛 ≥ 𝑛0, 𝑛 ≤ 𝑐
• That’s not true!!!  What about, say, 𝑛0 + c + 1?

• Then 𝑛 ≥ 𝑛0, but , 𝑛 > 𝑐
• Contradiction!

𝑇 𝑛 = 𝑂 𝑔 𝑛  ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡.  ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Take-away from examples

• To prove 𝑇(𝑛)  =  𝑂(𝑔(𝑛)), you have to come up 
with 𝑐 and 𝑛0 so that the definition is satisfied.

• To prove 𝑇(𝑛) is NOT 𝑂(𝑔(𝑛)), one way is proof by 
contradiction:

• Suppose (to get a contradiction) that someone gives you 
a 𝑐 and an 𝑛0 so that the definition is satisfied.

• Show that this someone must by lying to you by deriving 
a contradiction.



Another example: polynomials

• Say 𝑝 𝑛 = 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + ⋯ + 𝑎1𝑛 + 𝑎0 
is a polynomial of degree 𝑘 ≥ 1.

• Then: 

1.  𝑝 𝑛 = 𝑂 𝑛𝑘
2.  𝑝 𝑛  is not 𝑂 𝑛𝑘−1

• See the book (AI Section 2.3.2) for a proof.

Siggi the Studious Stork

Try to prove it 

yourself first!



More examples

• n3 + 3n = O(n3 – n2)

• n3 + 3n = Ω(n3 – n2)

• n3 + 3n = Θ(n3 – n2)

• 3n is NOT O(2n)

• log2(n) = Ω(ln(n))

• log2(n) = Θ( 2loglog(n) )

Siggi the Studious Stork

Work through these 

on your own!  Also 

look at the examples 

in the reading!



Some brainteasers

• Are there functions 𝑓, 𝑔 so that NEITHER 𝑓 = 𝑂(𝑔) nor 𝑓 =  Ω(𝑔)?

• Are there non-decreasing functions 𝑓, 𝑔 so that 
the above is true?

Ollie the Over-achieving Ostrich



Recap: Asymptotic Notation

• This makes both Plucky and Lucky happy.
• Plucky the Pedantic Penguin is happy because 

there is a precise definition.

• Lucky the Lackadaisical Lemur is happy because we 

don’t have to pay close attention to all those pesky 
constant factors.

• But we should always be careful not to abuse it.

• In the course, (almost) every algorithm we see 

will be actually practical, without needing to 

take 𝑛 ≥ 𝑛0 = 210000000.

This is my 

happy face!



Back Insertion Sort

1. Does it work?

2. Is it fast?



Insertion Sort: running time

• Operation count was:

• The running time is 𝑂 𝑛2
Seems 

plausible

Go back to the pseudocode 

and convince yourself of this!

• 2𝑛2 − 𝑛 − 1 variable assignments

• 2𝑛2 − 𝑛 − 1 increments/decrements

• 2𝑛2 − 4𝑛 + 1 comparisons

• …



Insertion Sort: running time

n-1 iterations 

of the outer 

loop

In the worst case, 

about n iterations 

of this inner loop

def InsertionSort(A):    
   for i in range(1,len(A)):  

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

SLIDE SKIPPED IN CLASS

As you get more used to this, you won’t have to count up operations anymore.  
For example, just looking at the pseudocode below, you might think…

“There’s O(1) stuff going on inside the inner loop, so 
each time the inner loop runs, that’s O(n) work.  Then 

the inner loop is executed O(n) times by the outer 

loop, so that’s O(n2).”



What have we learned?

InsertionSort is an algorithm that 
correctly sorts an arbitrary n-element 

array in time 𝑂 𝑛2 .

Can we do better?



The Plan

• InsertionSort recap

• Worst-case analyisis 

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?



Can we do better?

• MergeSort: a divide-and-conquer approach

• Recall from last time:

Big problem

Smaller 

problem

Smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Recurse!

Divide and 

Conquer:

Recurse!



1

MergeSort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

Code for the MERGE step is given in the 

Lecture2 IPython notebook, or the textbook

MERGE!

How would 

you do this 

in-place?

Ollie the over-achieving Ostrich



MergeSort Pseudocode

• n = length(A)

• if n ≤ 1:

• return A

• L = MERGESORT(A[ 0 : n/2])

• R = MERGESORT(A[n/2 : n ])

• return MERGE(L,R)

MERGESORT(A):

If A has length 1,

It is already sorted!

Sort the right half

Sort the left half

Merge the two halves

See Lecture 2 IPython notebook for MergeSort Python Code.



Two questions

1. Does this work?

2. Is it fast?

Empirically: 
1. Seems to work. 

2. Seems fast.

IPython notebook says…



It works

• Yet another job for…

Proof By 
Induction!

Work this out!  There’s a skipped slide 
with an outline to help you get started.



Outline!
• Inductive hypothesis (IH): 

“In every recursive call on an array of length at most i, 
MERGESORT returns a sorted array.”

• MERGESORT(A):

• n = length(A)

• if n ≤ 1:

• return A

• L = MERGESORT(A[0 : n/2])

• R = MERGESORT(A[n/2 : n])

• return MERGE(L,R)

• Base case (i=1): a 1-element array is 

always sorted, so IH holds for i=1.

• Inductive step: Need to show: if IH 

holds for all 0<i<k, then it holds for i=k.

• Aka, need to show that if L and R are 

sorted, then MERGE(L,R) is sorted.

• Conclusion: The IH holds for i=1,2,...,n, 

and in particular for n.

• Aka, In the top recursive call, 

MERGESORT returns a sorted array! Fill in the inductive step!
HINT: You will need to prove that the 

MERGE algorithm is correct, for which 

you may need…another proof by 
induction!

Assume that n is a power of 2 

for convenience.

THIS SLIDE SKIPPED IN CLASS



It’s fast

CLAIM:

MergeSort runs in time 𝑂 𝑛 log 𝑛
• Proof coming soon.

• But first, how does this compare to InsertionSort?
• Recall InsertionSort ran in time O 𝑛2 .

Assume that n is a power of 2 

for convenience.



𝑂(𝑛 log 𝑛 ) vs. 𝑂(𝑛2)? 



Quick log refresher

• Def: log(𝑛) is the number so that 2log 𝑛 = 𝑛.

• Intuition: log(𝑛) is how many times you need to divide 
n by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1 log(32) = 5

All logarithms in this course are base 2

64, 32, 16, 8, 4, 2, 1 log(64) = 6

log(128) = 7

log(256) = 8 

log(512) = 9

….
log(# particles in the universe) < 280

Halve 5 times

Halve 6 times

⇒
⇒

• log(𝑛) grows 
very slowly!

Aside:



• log 𝑛  grows much more slowly than 𝑛
• 𝑛 log 𝑛  grows much more slowly than 𝑛2
𝑂(𝑛 log  𝑛) vs. 𝑂(𝑛2)? 

Punchline: A running time of O(n log n) is a 

lot better than O(n2)!



Now let’s prove the claim

CLAIM:

MergeSort runs in time 𝑂 𝑛 log 𝑛
Assume that n is a power of 2 

for convenience.



Let’s prove the claim
Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…Focus on just one of 

these sub-problems

Level 0

Level 1

Level t

Level log(n)

2t subproblems 

at level t.



How much work in this sub-problem?

n/2t

n/2t+1 n/2t+1

Time spent MERGE-ing 

the two subproblems

Time spent within the 

two sub-problems

+



How much work in this sub-problem?

𝑘
𝑘/2 𝑘/2

Time spent MERGE-ing 

the two subproblems

Time spent within the 

two sub-problems

+

Let 𝑘 = 𝑛/2𝑡 …



1

How long does it 
take to MERGE?

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Code for the MERGE 

step is given in the 

Lecture2 notebook.

MERGE!

k

k/2 k/2

k/2k/2

k



How long does it 
take to MERGE?

Code for the MERGE 

step is given in the 

Lecture2 notebook.

k

k/2 k/2

Question: in big-Oh notation, how long does it take to 

run MERGE on two lists of size k/2?

Answer: It takes time O(k), since we just walk across the 

list once.

k

k/2 k/2

There are O(k) operations done at this node.  

(Not including work at recursive calls).  
Take-away:



Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

k

k/2 k/2

There are O(k) operations 

done at this node.  



Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

How many operations are done at this level of the 

tree?  (Just MERGE-ing subproblems).

How about at this level of the tree?

(just MERGE-ing, between both n/2-sized 

problems)

This level?

This level?

Think, Pair, 

Share!

k

k/2 k/2

There are O(k) operations 

done at this node.  



…

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

Level

Amount of work 

at this level

0

# 

problems

1

2

t

log(n)

1

2

4

2t

n

Size of 

each

problem

n

n/2

n/4

n/2t

1

O(n)

O(n)

O(n)

O(n)

O(n)

…

Explanation for this table 

done on the board!



Total runtime…

• 𝑂(𝑛) work per level, at every level

• log(𝑛)  +  1 levels

•𝑂( 𝑛 log(𝑛) ) total!

That was the claim! 



What have we learned?

• MergeSort correctly sorts a list of n integers in time 𝑂(𝑛 log(𝑛)).
• That’s (asymptotically) better than InsertionSort!



The Plan

• InsertionSort recap

• Worst-case analyisis 

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

Wrap-Up



Recap

• InsertionSort runs in time 𝑂(𝑛2)
• MergeSort is a divide-and-conquer algorithm that runs 

in time 𝑂(𝑛 log(𝑛))
• How do we show an algorithm is correct?

• Today, we did it by induction

• How do we measure the runtime of an algorithm?
• Worst-case analysis

• Asymptotic analysis

• How do we analyze the running time of a recursive 
algorithm?
• One way is to draw a recursion tree.



Next time

• A more systematic approach to analyzing the 
runtime of recursive algorithms.

Before next time

• Pre-Lecture Exercise:
• A few recurrence relations

• Do HW0 (due Tuesday!)
• Get started on HW1 
• perhaps at the HW party on Monday!
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