
Lecture 2
Asymptotic Notation,

Worst-Case Analysis, and MergeSort

Announcements

• HW0 Due Tuesday!

• HW1 out soon – due a week from Friday.

• Homework Party!

• Monday 5:30-7:30pm (see website / Ed announcement for
details)

• There will be food!

• Sections!

• Start today! Check out website for schedule/locations

• One section will be recorded!

• Check the exam schedule and your calendar.

• If you cannot take the exams, you should not take this class!

Last time

• Algorithms are awesome!

• Our motivating questions:

• Does it work?

• Is it fast?

• Can I do better?

• Karatsuba integer multiplication

• Example of “Divide and Conquer”
• Not-so-rigorous analysis

Philosophy

Technical content

Plucky the pedantic

penguin

Lucky the

lackadaisical lemur

Ollie the

over-achieving ostrich

Siggi the

studious stork

Cast

Think-Pair-Share

Terrapins

Emery the

Ethical Emu

Today

• We are going to ask:

• Does it work?

• Is it fast?

• We’ll start to see how to answer these by looking at
some examples of sorting algorithms.

• InsertionSort

• MergeSort

SortingHatSort not discussed

The Plan

• Sorting!

• Worst-case analyisis

• InsertionSort: Does it work?

• Asymptotic Analysis

• InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

Sorting

• Important primitive

• For today, we’ll pretend all elements are distinct.

6 4 3 8 1 5 2 7

1 2 3 4 5 6 7 8

Length of the list is n

I hope everyone did the

pre-lecture exercise!

What was the
mystery sort
algorithm?

1. MergeSort

2. QuickSort

3. InsertionSort

4. BogoSort

def mysteryAlgorithmTwo(A):
 for i in range(1,len(A)):

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):

 for x in A:

 B = [None for i in range(len(A))]

 for i in range(len(B)):

 if B[i] == None or B[i] > x:

 j = len(B)-1

 while j > i:

 B[j] = B[j-1]

 j -= 1

 B[i] = x

 break

 return B

I hope everyone did the

pre-lecture exercise!

What was the
mystery sort
algorithm?

1. MergeSort

2. QuickSort

3. InsertionSort

4. BogoSort

def MysteryAlgorithmTwo(A):
 for i in range(1,len(A)):

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):

 for x in A:

 B = [None for i in range(len(A))]

 for i in range(len(B)):

 if B[i] == None or B[i] > x:

 j = len(B)-1

 while j > i:

 B[j] = B[j-1]

 j -= 1

 B[i] = x

 break

 return B

InsertionSort
example

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

Start by moving A[1] toward

the beginning of the list until

you find something smaller

(or can’t go any further):

Then move A[2]:

Then move A[3]:

Then move A[4]:

Then we are done!

46 3 8 5

Insertion Sort

1. Does it work?

2. Is it fast?

Plucky the

Pedantic Penguin

What does that

mean???

The Plan

• InsertionSort recap

• Worst-case Analysis

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

Claim: InsertionSort “works”

• “Proof:” It just worked in this example:

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

46 3 8 5

Sorted!

Claim: InsertionSort “works”

• “Proof:” I did it on a bunch of random lists and it
always worked:

What does it mean to “work”?

• Is it enough to be correct on only one input?

• Is it enough to be correct on most inputs?

• In this class, we will use worst-case analysis:

• An algorithm must be correct on all possible inputs.

• The running time of an algorithm is the worst possible
running time over all inputs.

Worst-case analysis

• Pros: very strong guarantee

• Cons: very strong guarantee

Algorithm

designer

Algorithm:

 Do the thing

 Do the stuff

 Return the answer

Here is my algorithm!

Here is an input!

(Which I designed

to be terrible for

your algorithm!)

Think of it like a game: Worst-case analysis guarantee:

Algorithm should work (and be

fast) on that worst-case input.

Insertion Sort

1. Does it work?

2. Is it fast?

• Okay, so it’s pretty obvious that it works.

• HOWEVER! In the future it won’t be so
obvious, so let’s take some time now to
see how we would prove this rigorously.

Why does this work?

• Say you have a sorted list, , and

another element .

• Insert right after the largest thing that’s still

smaller than . (Aka, right after).

• Then you get a sorted list:

43 6 8

5

5

43 6 85

5 4

So just use this logic at every step.

The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] means

that [4,6] becomes a sorted list.

The first two elements, [4,6], make up a

sorted list.

The first three elements, [3,4,6], make up a

sorted list.

So correctly inserting 3 into the list [4,6] means

that [3,4,6] becomes a sorted list.

So correctly inserting 8 into the list [3,4,6] means

that [3,4,6,8] becomes a sorted list.

The first four elements, [3,4,6,8], make up a

sorted list.

46 3 8 54 3 8 5

64 3 8 5

64 3 8 5

4 63 8 5

43 6 8 5

43 6 85

43 6 8 5

43 6 8 5

So correctly inserting 5 into the list [3,4,6,8]

means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!

This sounds like a job for…

Proof By
Induction!

There is a handout with details!

• See website!

Outline of a proof by induction

• Inductive Hypothesis:

•

• Base case:

•

• Inductive step:

•

•

• Conclusion:

•

•

•

•

The first two elements, [4,6], make up a

sorted list.

So correctly inserting 3 into the list [4,6] means

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was

iteration i=2.

Let A be a list of length n

Outline of a proof by induction

• Inductive Hypothesis (inducting on 𝑖):

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).

• Base case:

•

• Inductive step:

•

•

• Conclusion:

•

•

•

•

The first two elements, [4,6], make up a

sorted list.

So correctly inserting 3 into the list [4,6] means

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was

iteration i=2.

Let A be a list of length n

Outline of a proof by induction

• Inductive Hypothesis (inducting on 𝑖):

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).

• Base case (i=0):

• A[:1] is sorted at the end of the 0’th iteration. ✓
• Inductive step:

• For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it holds for i=k.

• Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k

• Conclusion:

• The inductive hypothesis holds for i = 0, 1, …, n-1.

• In particular, it holds for i=n-1.

• A[:n] is sorted at the end of the n-1’st iteration

• Aka, A is sorted at the end of the algorithm! ✓
The first two elements, [4,6], make up a

sorted list.

So correctly inserting 3 into the list [4,6] means

that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5

This logic

(see handout for details)

This was

iteration i=2.

Let A be a list of length n

Aside: proofs by induction

• We’re gonna see/do/skip over a lot of them.

• I’m assuming you’re comfortable with them from CS103.
• When you assume…

• If that went by too fast and was confusing:

• Go to Office Hours / Section

• Lecture 2 Handout

• Book (appendix A)

• Ian Tullis’s notes (in the Resources tab)
• Office Hours

Make sure you really

understand the argument on

the previous slide! Check

out the handout for a more

formal write-up, and go to

office hours if you have

questions!

Siggi the Studious Stork

What have we learned?

• In this class we will use worst-case analysis:

• We assume that a “bad guy” comes up with a worst-case
input for our algorithm, and we measure performance
on that worst-case input.

• With this definition, InsertionSort “works”
• Proof by induction!

The Plan

• InsertionSort recap

• Worst-case Analysis

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

How fast is InsertionSort?

• This fast:

I dunno…let’s
just try it out!

Issues with this answer?

• The “same” algorithm can be
slower or faster depending
on the implementations.

• It can also be slower or
faster depending on the
hardware that we run it on.

• It might also be slower or
faster depending on the
inputs we use.

• What if n=2000?

With this answer,

“running time” isn’t
even well-defined!

How fast is InsertionSort?

Let’s count the number of operations!

def InsertionSort(A):
 for i in range(1,len(A)):

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

By my count*…
• 2𝑛2 − 𝑛 − 1 variable assignments

• 2𝑛2 − 𝑛 − 1 increments/decrements

• 2𝑛2 − 4𝑛 + 1 comparisons

• … *Do not pay attention to these formulas, they do not matter.

Also not valid for bug bounty points.

Issues with this answer?

• It’s very tedious!
• Might be slightly

different for slightly
different
implementations.

• In order to use this to
understand running
time, I need to know
how long each operation
takes, plus a whole
bunch of other stuff…

Counting individual

operations is a lot of work and

doesn’t seem very helpful!

Lucky the lackadaisical lemur

def InsertionSort(A):
 for i in range(1,len(A)):

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

In this class we will use…

• Big-Oh notation!

• Gives us a meaningful way to talk about the
running time of an algorithm, independent of
programming language, computing platform, etc.,
without having to count all the operations.

Main idea:

Focus on how the runtime scales with n (the input size).

Number of operations
Asymptotic Running

Time110 ⋅ 𝑛2 + 100 𝑂 𝑛20.063 ⋅ 𝑛2 − .5 𝑛 + 12.7 𝑂 𝑛2
100 ⋅ 𝑛1.5 − 1010000 𝑛 𝑂 𝑛1.5

11 ⋅ 𝑛 log 𝑛 + 1 𝑂 𝑛 log 𝑛 We say this algorithm is

“asymptotically faster”
than the others.

(Only pay attention to the largest

function of n that appears.)Some examples…

Why is this a good idea?

• Suppose the running time of an algorithm is:𝑇 𝑛 = 10𝑛2 + 3𝑛 + 7 ms

This constant factor of 10

depends a lot on my

computing platform… These lower-order

terms don’t really
matter as n gets large.

We’re just left with the n2 term!

That’s what’s meaningful.

Pros and Cons of Asymptotic Analysis

• Abstracts away from
hardware- and language-
specific issues.
• Makes algorithm analysis

much more tractable.
• Allows us to meaningfully

compare how algorithms will
perform on large inputs.

• Only makes sense if n is

large (compared to the

constant factors).

Pros: Cons:

1000000000 n

is “better” than n2 ?!?!

Informal definition for O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.

• Think of 𝑇 𝑛 as a runtime: positive and increasing in n.

• We say “𝑇 𝑛 is 𝑂 𝑔 𝑛 ” if:
for large enough n, 𝑇 𝑛 is at most some constant multiple of 𝑔 𝑛 .

Here, “constant” means “some number
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”

Example2𝑛2 + 10 = 𝑂 𝑛2 for large enough n, 𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Example2𝑛2 + 10 = 𝑂 𝑛2 for large enough n, 𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Example2𝑛2 + 10 = 𝑂 𝑛2
3𝑔(𝑛) = 3𝑛2

for large enough n, 𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Example2𝑛2 + 10 = 𝑂 𝑛2

𝑛 = 4

for large enough n, 𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

3𝑔(𝑛) = 3𝑛2

Formal definition of O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.

• Think of 𝑇 𝑛 as a runtime: positive and increasing in n.

• Formally, 𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)“There exists”

“For all”

“such that”

“If and only if”

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
(Choose c=3)

3𝑔(𝑛) = 3𝑛2

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
(Choose n0=4)

(Choose c=3)

3𝑔(𝑛) = 3𝑛2

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
Formally:
• Choose 𝑐 = 3
• Choose 𝑛0 = 4
• Then:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2

3𝑔(𝑛) = 3𝑛2

We can see that this is

true on the graph, or

prove it with algebra:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2 ∀𝑛 ≥ 4, 10 ≤ 𝑛2⇔ ∀𝑛 ≥ 4, 3.162 ≤ 𝑛⇔

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Example2𝑛2 + 10 = 𝑂 𝑛2
3𝑔(𝑛) = 3𝑛2

Q: Why did we pick

 𝑐 = 3, 𝑛0 = 4? Why

is this the “right” way
to choose them?

A: There’s not one
“right” way!

Formally:
• Choose 𝑐 = 3
• Choose 𝑛0 = 4
• Then:∀𝑛 ≥ 4, 2𝑛2 + 10 ≤ 3𝑛2

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)Same example2𝑛2 + 10 = 𝑂 𝑛2
Formally:
• Choose 𝑐 = 7
• Choose 𝑛0 = 2
• Then:∀𝑛 ≥ 2, 2𝑛2 + 10 ≤ 7 ⋅ 𝑛2

7𝑔(𝑛) = 7𝑛2

Choose 𝑛0 = 2
There’s not a

"correct” choice of 𝑐

and 𝑛0!
As long as you can find any 𝑐, 𝑛0

that work, you’ll have shown that 𝑇(𝑛) = 𝑂(𝑔 𝑛)

What about:𝑛 = 𝑂 𝑛2 ? 𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

O(…) is an upper bound:𝑛 = 𝑂(𝑛2) 𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)
• Choose c = 1

• Choose n0 = 1

• Then∀𝑛 ≥ 1, 𝑛 ≤ 𝑛2
𝑔 𝑛 = 𝑛2

𝑇(𝑛) = 𝑛

Ω(…) means a lower bound

• We say “𝑇 𝑛 is Ω 𝑔 𝑛 ” if, for large enough n, 𝑇 𝑛 is at least as big as a constant multiple of 𝑔 𝑛 .

• Formally, 𝑇 𝑛 = Ω 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛
Switched these!!

Example𝑛 log2 𝑛 = Ω 3𝑛 𝑇 𝑛 = Ω 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

Example𝑛 log2 𝑛 = Ω 3𝑛
• Choose 𝑐 = 1/3
• Choose 𝑛0 = 2
• Then

𝑇 𝑛 = Ω 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

∀𝑛 ≥ 2, 3𝑛3 ≤ 𝑛 log2 𝑛

Θ(…) means both!

•We say “𝑇 𝑛 is Θ 𝑔(𝑛) ” iff both:

 𝑇 𝑛 = 𝑂 𝑔 𝑛
and

 𝑇 𝑛 = Ω 𝑔 𝑛

Non-Example:𝑛2is not O 𝑛
• Proof by contradiction:

• Suppose that 𝑛2 = 𝑂 𝑛 .
• Then there is some positive 𝑐 and 𝑛0 so that:∀𝑛 ≥ 𝑛0, 𝑛2 ≤ 𝑐 ⋅ 𝑛
• Divide both sides by n:∀𝑛 ≥ 𝑛0, 𝑛 ≤ 𝑐
• That’s not true!!! What about, say, 𝑛0 + c + 1?

• Then 𝑛 ≥ 𝑛0, but , 𝑛 > 𝑐
• Contradiction!

𝑇 𝑛 = 𝑂 𝑔 𝑛 ⟺∃𝑐, 𝑛0 > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Take-away from examples

• To prove 𝑇(𝑛) = 𝑂(𝑔(𝑛)), you have to come up
with 𝑐 and 𝑛0 so that the definition is satisfied.

• To prove 𝑇(𝑛) is NOT 𝑂(𝑔(𝑛)), one way is proof by
contradiction:

• Suppose (to get a contradiction) that someone gives you
a 𝑐 and an 𝑛0 so that the definition is satisfied.

• Show that this someone must by lying to you by deriving
a contradiction.

Another example: polynomials

• Say 𝑝 𝑛 = 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + ⋯ + 𝑎1𝑛 + 𝑎0
is a polynomial of degree 𝑘 ≥ 1.

• Then:

1. 𝑝 𝑛 = 𝑂 𝑛𝑘
2. 𝑝 𝑛 is not 𝑂 𝑛𝑘−1

• See the book (AI Section 2.3.2) for a proof.

Siggi the Studious Stork

Try to prove it

yourself first!

More examples

• n3 + 3n = O(n3 – n2)

• n3 + 3n = Ω(n3 – n2)

• n3 + 3n = Θ(n3 – n2)

• 3n is NOT O(2n)

• log2(n) = Ω(ln(n))

• log2(n) = Θ(2loglog(n))

Siggi the Studious Stork

Work through these

on your own! Also

look at the examples

in the reading!

Some brainteasers

• Are there functions 𝑓, 𝑔 so that NEITHER 𝑓 = 𝑂(𝑔) nor 𝑓 = Ω(𝑔)?

• Are there non-decreasing functions 𝑓, 𝑔 so that
the above is true?

Ollie the Over-achieving Ostrich

Recap: Asymptotic Notation

• This makes both Plucky and Lucky happy.
• Plucky the Pedantic Penguin is happy because

there is a precise definition.

• Lucky the Lackadaisical Lemur is happy because we

don’t have to pay close attention to all those pesky
constant factors.

• But we should always be careful not to abuse it.

• In the course, (almost) every algorithm we see

will be actually practical, without needing to

take 𝑛 ≥ 𝑛0 = 210000000.

This is my

happy face!

Back Insertion Sort

1. Does it work?

2. Is it fast?

Insertion Sort: running time

• Operation count was:

• The running time is 𝑂 𝑛2
Seems

plausible

Go back to the pseudocode

and convince yourself of this!

• 2𝑛2 − 𝑛 − 1 variable assignments

• 2𝑛2 − 𝑛 − 1 increments/decrements

• 2𝑛2 − 4𝑛 + 1 comparisons

• …

Insertion Sort: running time

n-1 iterations

of the outer

loop

In the worst case,

about n iterations

of this inner loop

def InsertionSort(A):
 for i in range(1,len(A)):

current = A[i]
j = i-1

while j >= 0 and A[j] > current:
A[j+1] = A[j]
j -= 1

A[j+1] = current

SLIDE SKIPPED IN CLASS

As you get more used to this, you won’t have to count up operations anymore.
For example, just looking at the pseudocode below, you might think…

“There’s O(1) stuff going on inside the inner loop, so
each time the inner loop runs, that’s O(n) work. Then

the inner loop is executed O(n) times by the outer

loop, so that’s O(n2).”

What have we learned?

InsertionSort is an algorithm that
correctly sorts an arbitrary n-element

array in time 𝑂 𝑛2 .

Can we do better?

The Plan

• InsertionSort recap

• Worst-case analyisis

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

Can we do better?

• MergeSort: a divide-and-conquer approach

• Recall from last time:

Big problem

Smaller

problem

Smaller

problem

Yet smaller

problem

Yet smaller

problem

Yet smaller

problem

Yet smaller

problem

Recurse!

Divide and

Conquer:

Recurse!

1

MergeSort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

Code for the MERGE step is given in the

Lecture2 IPython notebook, or the textbook

MERGE!

How would

you do this

in-place?

Ollie the over-achieving Ostrich

MergeSort Pseudocode

• n = length(A)

• if n ≤ 1:

• return A

• L = MERGESORT(A[0 : n/2])

• R = MERGESORT(A[n/2 : n])

• return MERGE(L,R)

MERGESORT(A):

If A has length 1,

It is already sorted!

Sort the right half

Sort the left half

Merge the two halves

See Lecture 2 IPython notebook for MergeSort Python Code.

Two questions

1. Does this work?

2. Is it fast?

Empirically:
1. Seems to work.

2. Seems fast.

IPython notebook says…

It works

• Yet another job for…

Proof By
Induction!

Work this out! There’s a skipped slide
with an outline to help you get started.

Outline!
• Inductive hypothesis (IH):

“In every recursive call on an array of length at most i,
MERGESORT returns a sorted array.”

• MERGESORT(A):

• n = length(A)

• if n ≤ 1:

• return A

• L = MERGESORT(A[0 : n/2])

• R = MERGESORT(A[n/2 : n])

• return MERGE(L,R)

• Base case (i=1): a 1-element array is

always sorted, so IH holds for i=1.

• Inductive step: Need to show: if IH

holds for all 0<i<k, then it holds for i=k.

• Aka, need to show that if L and R are

sorted, then MERGE(L,R) is sorted.

• Conclusion: The IH holds for i=1,2,...,n,

and in particular for n.

• Aka, In the top recursive call,

MERGESORT returns a sorted array! Fill in the inductive step!
HINT: You will need to prove that the

MERGE algorithm is correct, for which

you may need…another proof by
induction!

Assume that n is a power of 2

for convenience.

THIS SLIDE SKIPPED IN CLASS

It’s fast

CLAIM:

MergeSort runs in time 𝑂 𝑛 log 𝑛
• Proof coming soon.

• But first, how does this compare to InsertionSort?
• Recall InsertionSort ran in time O 𝑛2 .

Assume that n is a power of 2

for convenience.

𝑂(𝑛 log 𝑛) vs. 𝑂(𝑛2)?

Quick log refresher

• Def: log(𝑛) is the number so that 2log 𝑛 = 𝑛.

• Intuition: log(𝑛) is how many times you need to divide
n by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1 log(32) = 5

All logarithms in this course are base 2

64, 32, 16, 8, 4, 2, 1 log(64) = 6

log(128) = 7

log(256) = 8

log(512) = 9

….
log(# particles in the universe) < 280

Halve 5 times

Halve 6 times

⇒
⇒

• log(𝑛) grows
very slowly!

Aside:

• log 𝑛 grows much more slowly than 𝑛
• 𝑛 log 𝑛 grows much more slowly than 𝑛2
𝑂(𝑛 log 𝑛) vs. 𝑂(𝑛2)?

Punchline: A running time of O(n log n) is a

lot better than O(n2)!

Now let’s prove the claim

CLAIM:

MergeSort runs in time 𝑂 𝑛 log 𝑛
Assume that n is a power of 2

for convenience.

Let’s prove the claim
Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…Focus on just one of

these sub-problems

Level 0

Level 1

Level t

Level log(n)

2t subproblems

at level t.

How much work in this sub-problem?

n/2t

n/2t+1 n/2t+1

Time spent MERGE-ing

the two subproblems

Time spent within the

two sub-problems

+

How much work in this sub-problem?

𝑘
𝑘/2 𝑘/2

Time spent MERGE-ing

the two subproblems

Time spent within the

two sub-problems

+

Let 𝑘 = 𝑛/2𝑡 …

1

How long does it
take to MERGE?

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Code for the MERGE

step is given in the

Lecture2 notebook.

MERGE!

k

k/2 k/2

k/2k/2

k

How long does it
take to MERGE?

Code for the MERGE

step is given in the

Lecture2 notebook.

k

k/2 k/2

Question: in big-Oh notation, how long does it take to

run MERGE on two lists of size k/2?

Answer: It takes time O(k), since we just walk across the

list once.

k

k/2 k/2

There are O(k) operations done at this node.

(Not including work at recursive calls).
Take-away:

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

k

k/2 k/2

There are O(k) operations

done at this node.

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

How many operations are done at this level of the

tree? (Just MERGE-ing subproblems).

How about at this level of the tree?

(just MERGE-ing, between both n/2-sized

problems)

This level?

This level?

Think, Pair,

Share!

k

k/2 k/2

There are O(k) operations

done at this node.

…

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

Level

Amount of work

at this level

0

problems

1

2

t

log(n)

1

2

4

2t

n

Size of

each

problem

n

n/2

n/4

n/2t

1

O(n)

O(n)

O(n)

O(n)

O(n)

…

Explanation for this table

done on the board!

Total runtime…

• 𝑂(𝑛) work per level, at every level

• log(𝑛) + 1 levels

•𝑂(𝑛 log(𝑛)) total!

That was the claim!

What have we learned?

• MergeSort correctly sorts a list of n integers in time 𝑂(𝑛 log(𝑛)).
• That’s (asymptotically) better than InsertionSort!

The Plan

• InsertionSort recap

• Worst-case analyisis

• Back to InsertionSort: Does it work?

• Asymptotic Analysis

• Back to InsertionSort: Is it fast?

• MergeSort

• Does it work?

• Is it fast?

Wrap-Up

Recap

• InsertionSort runs in time 𝑂(𝑛2)
• MergeSort is a divide-and-conquer algorithm that runs

in time 𝑂(𝑛 log(𝑛))
• How do we show an algorithm is correct?

• Today, we did it by induction

• How do we measure the runtime of an algorithm?
• Worst-case analysis

• Asymptotic analysis

• How do we analyze the running time of a recursive
algorithm?
• One way is to draw a recursion tree.

Next time

• A more systematic approach to analyzing the
runtime of recursive algorithms.

Before next time

• Pre-Lecture Exercise:
• A few recurrence relations

• Do HW0 (due Tuesday!)
• Get started on HW1
• perhaps at the HW party on Monday!

	Slide 1: Lecture 2
	Slide 2: Announcements
	Slide 3: Last time
	Slide 4: Today
	Slide 5: The Plan
	Slide 6: Sorting
	Slide 7: I hope everyone did the pre-lecture exercise!
	Slide 8: I hope everyone did the pre-lecture exercise!
	Slide 9: InsertionSort example
	Slide 10: Insertion Sort
	Slide 11: The Plan
	Slide 12: Claim: InsertionSort “works”
	Slide 13: Claim: InsertionSort “works”
	Slide 14: What does it mean to “work”?
	Slide 15: Worst-case analysis
	Slide 16: Insertion Sort
	Slide 17: Why does this work?
	Slide 18: So just use this logic at every step.
	Slide 19: This sounds like a job for…
	Slide 20: There is a handout with details!
	Slide 21: Outline of a proof by induction
	Slide 22: Outline of a proof by induction
	Slide 23: Outline of a proof by induction
	Slide 24: Aside: proofs by induction
	Slide 25: What have we learned?
	Slide 26: The Plan
	Slide 27: How fast is InsertionSort?
	Slide 28: Issues with this answer?
	Slide 29: How fast is InsertionSort?
	Slide 30: Issues with this answer?
	Slide 31: In this class we will use…
	Slide 32: Main idea:
	Slide 33: Why is this a good idea?
	Slide 34: Pros and Cons of Asymptotic Analysis
	Slide 35: Informal definition for O(…)
	Slide 36: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 37: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 38: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 39: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 40: Formal definition of O(…)
	Slide 41: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 42: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 43: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 44: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 45: Example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 46: Same example 2 n squared plus 10 equals cap O open paren n squared , , close paren
	Slide 47: What about: n , equals , cap O open paren n 2 , close paren ?
	Slide 48: O(…) is an upper bound: n , equals , cap O open paren n 2 close paren
	Slide 49: Ω(…) means a lower bound
	Slide 50: Example n log sub 2 of open paren n , close paren equals cap omega open paren 3 n , close paren
	Slide 51: Example n log sub 2 of open paren n , close paren equals cap omega open paren 3 n , close paren
	Slide 52: Θ(…) means both!
	Slide 53: Non-Example: n squaredis not O open paren n , close paren
	Slide 54: Take-away from examples
	Slide 57: Another example: polynomials
	Slide 58: More examples
	Slide 59: Some brainteasers
	Slide 60: Recap: Asymptotic Notation
	Slide 61: Back Insertion Sort
	Slide 62: Insertion Sort: running time
	Slide 63: Insertion Sort: running time
	Slide 64: What have we learned?
	Slide 65: The Plan
	Slide 66: Can we do better?
	Slide 67: MergeSort
	Slide 68: MergeSort Pseudocode
	Slide 71: Two questions
	Slide 72: It works
	Slide 73: Outline!
	Slide 74: It’s fast
	Slide 76: cap O open paren n log , open paren n , close paren close paren vs. superscript base , cap O open paren n , end base , squared close paren ?
	Slide 77: Quick log refresher
	Slide 78
	Slide 79: Now let’s prove the claim
	Slide 80: Let’s prove the claim
	Slide 81: How much work in this sub-problem?
	Slide 82: How much work in this sub-problem?
	Slide 83: How long does it take to MERGE?
	Slide 84: How long does it take to MERGE?
	Slide 85: Recursion tree
	Slide 86: Recursion tree
	Slide 87: Recursion tree
	Slide 88: Total runtime…
	Slide 89: What have we learned?
	Slide 90: The Plan
	Slide 91: Recap
	Slide 92: Next time

