
CS 161 Pre-Lecture Exercise for Lecture 3
Fall 2025 Date: September 30, 2025

Pre-lecture exercises will not be collected for credit. However, you will get more out of each lecture if you do
them, and they will be referenced during lecture. We recommend writing out your answers to pre-lecture
exercises before class. Pre-lecture exercises usually should not take you more than 30 minutes.

In this pre-lecture exercise, you’ll explore recurrence relations. A recurrence relation defines a function T (n)
recursively. For example, for n = 2i which is a power of 2, we might define:

T (n) =

{
2 · T (n/2) + n n > 1

T (n) = 1 n = 1
.

Why is a function like this relevant to us? It turns out that it is a good way to write down the running time
of divide-and-conquer algorithms. For example, we saw with MergeSort that we broke up one problem of
size n into two problems of size n/2; and then it took us an extra O(n) operations to merge the solutions
together. Let’s say for concreteness that it takes 11n operations, where the 11 is arbitrary. So if T̃ (n) is the
number of operations it takes to run MergeSort on a list of size n, we could write something like

T̃ (n) = 2T̃ (n/2) + 11 · n,

which is similar to the function T (n) above. The way to interpret the base case T (1) = 1 is that it takes
one operation to sort a list of length 1, since we just return it; it’s already sorted. We saw in class that
T̃ (n) = O(n log(n)). That is, the running time of MergeSort is O(n log(n)).

Question 1. The first problem in the pre-lecture exercise is to understand the above text, and make sure
you understand the connection between the function T̃ (n) defined above to the running time of MergeSort.

For the rest of the pre-lecture exercise, you’ll see if you can generalize the argument that we saw in class
to different recurrence relations. For reference, on the next page we’ve shown in two different ways
how to show that T (n) = O(n log(n)). (We went with T (n) instead of T̃ (n) because it’s a little bit cleaner
to write down without carrying that factor of “11” around everywhere, and the point still gets across.) If
you found the tree method confusing, you might like the second method which just uses algebra.

Question 2. Now try to generalize the argument for T (n) to the following two recurrence relations. That
is, for each of T1(n) and T2(n) below, figure out an expression of the form Tj(n) = O( ). Assume that n
is a power of 2 if it helps.

• T1(n) =

{
T1(n/2) + n n > 1

T1(n) = 1 n = 1
.

• T2(n) =

{
4 · T2(n/2) + n n > 1

T2(n) = 1 n = 1
.
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Here are two different ways to understand the running time of T (n), when n is a power of 2:

SOLUTION 1. Just like we did in class, imagine a tree with log(n) + 1 levels. The top node is labeled
“n”, its two children are labeled “n/2”, and so on.

n

n/2 n/2

n/4 n/4 n/4 n/4

etc.

Consider T (n) = T (n/2) + T (n/2) + n. In the context of the tree above, that means that T (n) = n +
(stuff contributed by things in the tree lower than the root). That is,

T (n) = (label on the root) + (stuff contributed by things lower than the root).

We can repeat this logic recursively to figure out what that second term is, all the way down to the bottom
of the tree, where we have T (1) = 1. We conclude that each node in the tree that’s labeled k contributes k
to the sum.1 Now we add everything up:

• The zeroth layer contributes n, since there is one problem of size n, which contributes n.

• The first layer also contributes n, since there are two problems of size n/2, each of which contributes
n/2.

• · · ·

• The t’th layer also contributes n, since there are 2t problems of size n/2t, each of which contributes
n/2t.

• · · ·

• The log(n)’th layer (which is the bottom one) also contributes n, since there are n problems of size 1,
each of which (by the base case T (1) = 1) contributes 1.

Altogether there are log(n) + 1 layers, each contributing n, so we conclude that, when n is a power of 2,

T (n) = n(log(n) + 1).

Notice that this is an exact answer when n is a power of 2, we don’t even need a O(·).

SOLUTION 2. We can do the exact same calculation without the tree, by repeatedly applying our
formula.

T (n) = 2T (n/2) + n

= 2 (2T (n/4) + n/2) + n

= 4T (n/4) + 2n

= 4(2T (n/8) + n/4) + 2n

= 8T (n/8) + 3n

1Notice that this is a special consequence of the fact that the term we are adding in the definition of T (n) is exactly n; if it
were, say 11 · n, the contribution of a node labeled k would be 11k.
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and at this point we can spot the pattern: for all j ≤ log(n),

T (n) = 2jT (n/2j) + jn.

In order to formally prove that this is true, we should use a proof by induction; that’s called the substitution
method and we’ll talk about it soon. But for now you can convince yourself that this is true.

Once we have this, we can just plug in j = log(n), and get

T (n) = 2log(n)T (n/2log(n)) + n log(n) = n · T (1) + n log(n) = n(log(n) + 1),

just as before.
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