
CS 161 Problem Set 4
Fall 2025 Due: Friday October 31 , at 11:59pm on Gradescope.

Style guide and expectations: Please see the top of the “Homework” page on the course webpage
for guidance on what we are looking for in homework solutions. We will grade according to these
standards.

Make sure to look at the “We are expecting” blocks below each problem to see what we will
be grading for in each problem!

Collaboration policy: You may do the HW in groups of size up to three. Please submit one HW
for your whole group on Gradescope. (Note that there is an option to submit as a group). See the
“Policies” section of the course website for more on the collaboration policy.

LLM policy: Check out the course webpage for best practices on how to productively use LLMs
on homework, if you use them at all.

Exercises

We recommend you do the exercises on your own before collaborating with your group. The point
is to check your understanding.

1. (3 pt.) In the IPython Notebook HW4 E1.ipynb, available on the website along with this
problem set, you will get black-box access to two families of hash functions, A and B. One of
these families is a universal hash family, and the other is not. The question for you is: which
is which? You can play around with these families on the Jupyter notebook to answer your
question.

[We are expecting: An answer to the question (is A or B the universal hash family?), along
with an explanation. Your explanation should include relevant quantitative facts about A and
B (a well-labeled graph would be okay too). You should explain what you computed/graphed,
and why it convinces you that your answer is correct. Make sure that your answer references
the definition of a universal hash family. You do not need to submit any code.]

SOLUTION:

A is a universal hash family, and B is not. To see this, recall that the definition of a universal
hash family (in this setting) is that for all a, b ∈ {0, 1, . . . , 21} with a ̸= b, we should have

Pr
h∈H

[h(a) = h(b)] ≤ 1

3
,

where H is our hash family (either A or B). Equivalently, we can multiply both sides by 506
(the number of functions in both A and B) to see that H (either A or B) is a universal hash
family iff

the number of h ∈ H so that h(a) = h(b) ≤ 506

3
= 168.666.

1



Thus, for each a ̸= b in {0, . . . , 21}, we should count how many h there are in A so that
h(a) = h(b), and we should do the same for B.

I wrote some code to do that, and I found that for A, for every pair of a ̸= b, the number of
h ∈ A so that h(a) = h(b) is 154, which indeed is less than 168. Thus, A is a universal hash
family.

On the other hand, I found that there are lots of pairs a, b (for example, a = 0 and b = 18;
or a = 1 and b = 9; or a = 3 and b = 4; etc) so that the number of h ∈ B so that h(a) = h(b)
is 506, aka, all of them. Because there is even one such pair, we conclude that B is not a
universal hash family.

2. (2 pt.) [Filling in a gap from Lecture 8] Let h be a uniformly random hash function
that maps values u in a set U to the output set {1, ..., n}. Prove that if ui ̸= uj , that the
probability Pr[h(ui) = h(uj)] =

1
n .

[We are expecting: A short formal proof. It doesn’t need to be long, but make sure that
you explicitly use the fact that h(ui) and h(uj) are independent for i ̸= j.]

SOLUTION: A uniformly random hash function can be produced with the following proce-
dure: For each input value x, let h(x) be a uniformly random value in {1, .., n}, independent
from the choice of h(y) for all y ̸= x. Thus, for any ui ̸= uj ∈ U , h(ui) and h(uj) are
independent random variables. This means that

Pr[h(ui) = h(uj)] =
n∑

a=1

Pr[h(ui) = a AND h(uj) = a]

=
n∑

a=1

Pr[h(ui) = a] · Pr[h(uj) = a]

=

n∑
a=1

1

n2

=
n

n2
=

1

n
.

Above, we have used independence of h(ui) and h(uj) in the second line.

2



3. (4 pt.) Consider the following directed graph G:

A

B C

D E

3 1

1

1 3

1

For the following parts you might want to use the website http://madebyevan.com/fsm/,
which allows you to draw directed graphs in LATEX. (Note: On a Mac, fn+Delete will delete
nodes or edges). It is also fine to include an image created in your favorite drawing program,
or a photo/scan of a hand-drawn graph.1

(a) (2 pt.) Draw the DFS tree for G, starting from node A. Assume that DFS traverses
nodes in alphabetical order. (That is, if it could go to either B or C, it will always
choose B first).

[We are expecting: A picture of your tree. No further explanation is required.]

SOLUTION:

A

B

C

D

E

(b) (2 pt.) Draw the BFS tree for G, starting from node A. Assume that BFS traverses
nodes in alphabetical order.

[We are expecting: A picture of your tree. No further explanation is required.]

SOLUTION:

1If you want to use an LLM to generate LATEX code for a graph that you have come up with on your own, and
which you describe to the LLM, that’s fine; and it’s okay to copy-and-paste that LLM’s LATEX output to generate
your picture.

3



A

B
C

D

E

4



4. (5 pt.) Directed graphs are one of many ways to translate a messy real-world problem to
one that admits to algorithmic analysis. Recall from the first Embedded Ethics recorded
lecture, the case study from Bogotá’s Ministry of Transport, where the Ministry attempted
to measure the average speed of vehicles on roads using two spaced Bluetooth sensors. One
way they might make use of such information is in the generation of a directed graph like the
one in the previous exercise, where vertices represent locations of interest, and edge weights
represent the expected amount of time it would take for someone to travel from one vertex
to another.

(a) (3 pt.) Suppose the Ministry of Transportation used such a directed graph to help plan
routes for an expansion of their bus system.

What are two features of transportation infrastructure relevant to the problem of plan-
ning bus routes that are abstracted or idealized away in representing transportation
infrastructure as a directed graph?

[We are expecting: A short paragraph providing two relevant features of transporta-
tion infrastructure that are abstracted or idealized away. State the two features, explain
why they are relevant to the problem of bus routing, and explain why the directed graph
representation abstracts or idealizes away these features.]

SOLUTION:

(Students can choose to present 2 abstractions, 2 idealizations, or 1 of each, so long
as they present 2 total examples) Example: 2 relevant features of transportation that
are abstracted away in the graph representation are road infrastructure and the types
of vehicles expected on the road. They are abstracted away in the graph representation
because they are present in the real-world situation the graph is meant to represent,
but are absent in the representation. Road infrastructure might be relevant because
some elements of infrastructure make bus transport easier or harder. For example, a
pre-existing dedicated bus lane might make bus transportation substantially faster than
the average speed would suggest, or curb extensions might make it harder for buses to
turn at speed. The type of vehicle might be relevant because it may contribute to over-
or under-estimated speeds for bus routes. A road with many bicycles on it might have
a lower average speed than the expected bus speed, but a road with many motorcycles
on it might have a higher average speed than the expected bus speed.

(b) (2 pt.) Are there any harmful downstream consequences of deciding bus routes while
abstracting or idealizing away the two features you stated in part (a)?

[We are expecting: 1-3 sentences identifying a possible harm of abstracting or ideal-
izing away the relevant feature stated in part (a)]

SOLUTION:

(Any reasonable connection from the abstraction to a potential harm is good here, even
if a little far-fetched.) Yes, ignoring road infrastructure might make a route more or less
dangerous than expected. Curb extensions, for example, often have places close to the

5



corner for pedestrians to wait to cross, and it might make it more likely for an accident
to happen if a bus takes the turn too sharply.

6



Problems

5. (12 pt.) [Painted Penguins.] A large flock of T painted penguins will be waddling past the
Stanford campus next week as part of their annual migration from Monterey Bay Aquarium
to the Sausalito Cetacean Institute. Painted Penguins (not to be confused with pedantic
penguins) are an interesting species. They can come in a huge number of colors—say, M
colors—but each flock of T penguins only has m colors represented, where m < T . The
penguins will waddle by one at a time, and after they have waddled by they won’t come back
again.

For example, if T = 7, M = 100000 and m = 3, then a flock of T painted penguins might
look like:

seabreeze, seabreeze, indigo, ultraviolet, indigo, ultraviolet, seabreeze

You’ll see this sequence in order, and only once. After the penguins have gone, you’ll be
asked questions like “How many indigo penguins were there?” (Answer: 2), or “How many
neon orange penguins were there?” (Answer: 0).

You know m,M and T in advance (and you know the set of M possible colors), and you have
access to a universal hash family H, so that each function h ∈ H maps the set of M possible
colors into the set {0, . . . , n− 1}, for some integer n. For example, one function h ∈ H might
have h(seabreeze) = 5.

(a) (6 pt.) Suppose that n = 10m. Suppose also that you only have space to store:

• An array B of length n, which stores numbers in the set {0, . . . , T}, and
• one function h from H.

Use the universal hash family H to create a randomized data structure that fits in
this space and that supports the following operations in time O(1) in the worst case
(assuming that you can evaluate h ∈ H in time O(1)):

• Update(color): Update the data structure when you see a penguin with color
color waddle by.

• Query(color): Return the number of penguins of color color that you have seen
so far. For each query, your query should be correct with probability at least 9/10.
That is, for all colors color,

P{Query(color) = the true number of penguins with color color } ≥ 9

10
.

To describe your data structure:

i. Describe how the array B and the function h are initialized.

7



ii. Give pseudocode for Query.

iii. Give pseudocode for Update.

[We are expecting: A description following the outline above (including pseudocode),
and a short but rigorous proof that your data structure meets the requirements. Make
sure you clearly indicate where you are using the property of universal hash families.]

(b) (6 pt.) Suppose that you now have k times the space you had in part (a). That is,
you can store k arrays B1, . . . , Bk and k functions h1, . . . , hk from H. Adapt your data
structure from part (a) so that all operations run in time O(k), and the Query operation
is correct with probability at least 1− 1

10k
.

[We are expecting: A description following the outline above (except say how all
arrays Bi and functions hi are initialized), and a short but rigorous proof that your data
structure meets the requirements. Make sure you clearly indicate where you are using
the property of universal hash families.]

SOLUTION:

(a) Here is the description of our data structure:

• Our data structure stores an array B of length n, where each bucket stores a number
in {0, . . . , T} and is initialized to zero. Before the flock waddles by, we choose a
random h ∈ H and store that too.

• Update(color): B[h(color)] ++

• Query(color): Return B[h(color)].

Each of these operations takes time O(1). The probability that a single Query option
fails is the probability that any of the m (or m−1 other) colors which did appear collided
with the color that was queried. That is, we want

P{there is a color x which appeared, not the same as color, so that h(x) = h(color)}

to be small. By the universal hash family property, we have for each color x,

P{h(x) = h(color)} ≤ 1

n
.

Thus, by the union bound, the probability that there exists an x which appeared that
collides with color is at most

P{there is a color x which appeared, not the same as color, so that h(x) = h(color)}

≤ m · P{h(x) = h(color)} ≤ m

n
=

1

10
.

(b) We will basically just keep k copies of our data structure from part (a). More precisely,
our data structure stores:

• k arrays B1, . . . , Bk, initialized to zero.

• k hash functions h1, . . . hk ∈ H, chosen uniformly at random and independently.
(With replacement).

8



Then our update strategy is:

Update(color):

for i = 1,...,k:

B_i[ h_i(color) ] ++

Query(color):

return min_{i = 1,...,k} B_i[ h_i(color) ]

Both of these operations take time O(k), since they both loop over k things.

To compute the success probability of Query, notice that this returns the correct value
as long as the color color is isolated in any of the k tables. Since each of these k hash
functions are independent, we have:

P{for all i, there is a color x which appeared, not the same as color, so that hi(x) = hi(color)}
= (P{there is a color x which appeared, not the same as color, so that hi(x) = hi(color)})k

≤ (m · P{h(x) = h(color)})k

≤
(m
n

)k
=

1

10k
.

Thus, with probability at least 1−1/10k, there is at least one i so that Bi[hi(color)]] is equal
to the number of times that that color appeared, and Query(color) returns the right thing.

9



6. (6 pt.) [Badger badger badger.] A family of badgers lives in a network of tunnels; the
network is modeled by a connected, undirected graph G with n vertices and m edges (see
below). Each of the tunnels have different widths, and a badger of width x can only pass
through tunnels of width ≥ x.

For example, in the graph below, a badger with width x = 2 could get from v0 to v4 (either by
v0 → v1 → v4 or by v0 → v3 → v4). However, a badger of width 3 could not get from v0 to v4.

v0 v13.1415

v2 v3 v4

21.1 2

3.3 2.1

x

The graph is stored in the adjacency-list format we discussed in class. More precisely, G has
vertices stored as an array V of length n, and edges stored in an array E of length m. For
each i = 0, . . . , n−1, V [i] stores a pointer to the head of a linked list Ni, which stores integers
that index E. If e is in Ni, that means that the edge represented by E[e] touches the i’th
vertex. For each e, E[e] stores two integers (say, E[e][0] and E[e][1]) so that if i is in E[e],
then the i’th vertex is an endpoint of that edge.

You have access to a function tunnelWidth, which runs in time O(1), so that if e is an edge
in G, (that is, an integer between 0 and m−1 that indexes E), then tunnelWidth(e) returns
the width of the corresponding tunnel.

If it is helpful, you may assume access to a function BFS. Given a corresponding vertex array
V of pointers to linked lists, edge array E, and source vertex s ∈ {0, ..., n − 1}, you may
assume the function BFS(V,E, s) returns an array distance where distance[i] is the number
of edges on the shortest path from s to node i (or -1 if i is unreachable from s). The BFS
function runs in O(n+m) time.

[Actual questions on next page.]

10



(a) (6 pt.) Design a deterministic algorithm that takes as input G in the format above,
integers s, t ∈ {0, . . . , n − 1}, and a desired badger width x > 0; the algorithm should
return True if there is a path from vs to vt that a badger of width x could fit through,
or False if no such path exists.

(For example, in the example above we have s = 0 and t = 4. Your algorithm should
return True if 0 < x ≤ 2 and False if x > 2).

Your algorithm should run in time O(n+m). You may use any algorithm we have seen
in class as a subroutine.

Note: In your pseudocode, make sure you use the adjacency-list format for G described
above. For example, your pseudocode should not say something like “iterate over all
edges in the graph.” Instead it should more explicitly show how to do that with the
format described. (We will not be so pedantic about this in the future, but one point of
this problem is to make sure you understand how the adjacency-list format works).

[We are expecting: Pseudocode AND an English description of your algorithm, and
a short justification of the running time. You should make sure to use the adjacency-list
representation of G described above in your pseudocode. You can use any algorithms we
have seen from class as a subroutine, but if you significantly modify them, make sure to
be precise about how this interacts with the adjacency-list representation.]

(b) (0 pt.) [This part is OPTIONAL since this PSET is long enough. It won’t
be graded, but it’s good practice!] Design a deterministic algorithm which takes as
inputG in the format above and integers s, t ∈ {0, . . . , n−1}; the algorithm should return
the largest real number x so that there exists a path from vs to vt which accomodates a
badger of width x. Your algorithm should run in time O((n+m) log(m)). You may use
any algorithm we have seen in class as a subroutine. (Hint, use part (a)).

Note: Don’t assume that you know anything about the tunnel widths ahead of time.
(e.g., they are not necessarily bounded integers).

[We are expecting: Nothing, this part is optional! But if we were expecting something,
it would be: Pseudocode AND and English description of your algorithm, and a short
justification of the running time.]

SOLUTION:

(a) The idea is to remove the too-narrow edges from G, and then run BFS (or DFS works
too) to see if there is a path between s and t.

def widePath( G, s, t, x ):

Say that G = V,E

# first, remove all of the edges that are too narrow

for i in range(n):

Ni = V[i]

for e in Ni:

if tunnelWidth(e) < x:

remove e from Ni

\\ time O(1) to remove e since we are already looking at it

11



\\ (just manipulating pointers)

E[e] = None

distance = BFS(V,E,s)

if distance[t] != -1:

\\ t was reached during the BFS

return True

Else:

return False

This algorithm runs in time O(n +m). First, it loops over the edges and removes the
ones that are too narrow. This takes time O(m + n), since for each vertex i we do
O(deg(i)) + O(1) work: for each neighbor j of i we check if the edge e = {i, j} is too
narrow, and potentially remove it.

O

(∑
i

deg(i) +
∑
i

1

)
= O(m+ n)

work. Next, it runs BFS, which takes time O(n+m).

You might be worried that if e = {i, j}, then we remove e from Ni, but we don’t remove
e from Nj when we do that. However, we will remove it when we hit j in the outer loop.

Note: It is also okay to write down a modified version of BFS/DFS that just ignores the
edges which are too narrow for the badger, as long as the modified version is sufficiently
pedantic about the adjacency-list format.

Note: It is also okay to say that the algorithm actually runs in time O(m). This is
because we only need to explore the connected component of the graph that s is in, so
without loss of generality we may assume that G is connected. In that case, n = O(m),
so O(n+m) = O(m).

(b) The high-level idea is to use binary search and then use part (a) to find the largest x
that works. Notice that the maximum x must be equal to one of the edge weights.

def widestPath( G, s, t ):

if s == t:

return Infinity # any badger can fit in a path from s to t, since s=t

# first, generate a list of the weights that appear, in time O(m + n)

W = []

for i in range(n):

Ni = V[i]

for e in V[i]:

if i == min(E[e][0],E[e][1]): # so that we don’t add the tunnel twice

add tunnelWidth(e) to W

sort W in time O(m log(m)) using MergeSort.

# now run binary search to see what the largest width we can accomodate.

12



a=0, b=n-1 # we are searching in {a,a+1,...,b}

while b > a:

mid = ceiling( (a+b)/2 )

isThereAPath = widePath( G, s, t, W[mid] )

if isThereAPath:

# then a badger of size W[mid] could get from s to t;

# next check a wider badger

a = mid

else:

# then a badger of size W[mid] was too wide to get from s to t;

# next check a narrower badger

b = mid - 1

# now we should have a=b = index of widest possible value in W.

return W[a]

The running time is O((n + m)log(m)). This is because it takes time O(mlog(m)) to
sort the list. Then we call widePath O(log(m)) times during the binary search, and each
time it takes time O(n+m).

13


