CS 161 Problem Set 1
Fall 2025 Due: Friday October 3 at 11:59pm on Gradescope.

Style guide and expectations: Please see the top of the “Homework” page on the course webpage
for guidance on what we are looking for in homework solutions. We will grade according to these
standards.

Make sure to look at the “We are expecting” blocks below each problem to see what we will
be grading for in each problem!

Collaboration policy: You may do the HW in groups of size up to three. Please submit one HW
for your whole group on Gradescope. (Note that there is an option to submit as a group). See the
“Policies” section of the course website for more on the collaboration policy.

LLM policy: Check out the course webpage for best practices on how to productively use LLMs
on homework, if you use them at all.

Exercises

We recommend you do the exercises on your own before collaborating with your group. The point
is to check your understanding.

1. (1 pt.) See the IPython notebook HW1.ipynb| for Exercise 1. Modify the code to generate
a plot that convinces you that T'(z) = O(g(z)). Note: There are instructions for installing
Jupyter notebooks in the pre-lecture exercise for Lecture 2.

[We are expecting: Your choice of ¢, ng, the plot that you created after modifying the
code in Fxercise 1, and a short explanation of why this plot should convince a viewer that

T(z) = O(g(2))]

2. (9 pt.) For each row, indicate whether or not the quantity in column A is O, €, or © of
the quantity in column B. Put a v if your answer is “yes”, and leave blank if your answer is
“no.” We'’ve filled in the first two rows for you. Notice that it’s possible for multiple spaces
per row to have a v' in them. All logarithms are base 2 unless otherwise stated.

[We are expecting: Some of the blanks to be marked with a v' (or X, or @, or your
favorite symbol). No explanation is required.]

Note: The BTEX template for this problem set has the code for the table.

https://cs161-stanford.github.io/assets/links/HW1.ipynb

A B (@)
1 | logn n v
2 | n/2023 |2023-n |V
3 | nd n?
4 | 3" 2"
5 | n? 2"
6 | n0d (0.5)"
7 | Inn logign
8 n3 810g2 n
9 nl Inn 1
10 | nt/3 (logn)3
11 | loglogn | v/logn

3. (4 pt.)
(a) (2 pt.) Prove that n is O(nlogyn).
[We are expecting: A formal proof, using the definition of O(-) that we saw in class.]

(b) (2 pt.) Prove that n is not Q(nlogyn).
[We are expecting: A formal proof, using the definition of Q(-) that we saw in class.]

Problems

4. [Nuts!] (14 pt.)

[Meta problem-solving skills: Another version of this problem could jump straight to part
(d). The structure of this problem, particularly (b) and (c), is supposed to give you an example
of how to solve a harder problem by building up from simpler problems. In the future, you’ll
have to do more and more of this on your own!]

Socrates the Scientific Squirrel is conducting some ex-

periments. Socrates lives in a very tall tree with n

branches, and she wants to find out what is the low-

est branch i so that an acorn will break open when

dropped from branch i. (If an acorn breaks open when

dropped from branch 4, then an acorn will also break Branch n — 1
open when dropped from branch j for any j > i.)

The catch is that, once an acorn is broken open,
Socrates will eat it immediately and it can’t be
dropped again.

Branch 1 L

(a) (2 pt.) Suppose that Socrates has [log(n)| + 1 Branch 0 ——
acorns. Give a procedure so that she can identify .‘

the correct branch using O(log(n)) drops.

[We are expecting: Very clear pseudocode or a
short English description of your algorithm. You
do not need to justify the number of drops. If it
helps you may assume that n is a power of 2.]

(b) (2 pt.) Suppose that Socrates has only one acorn. Give a procedure so that she can

identify the correct branch using O(n) drops, and explain why your O(log(n))-drop
solution from part (a) won’t work.
[We are expecting: Very clear pseudocode or a short English description of your
algorithm, and one sentence about why your algorithm from part (a) does not apply.
You do not need to justify the number of drops. If it helps you may assume that the
acorn breaks when dropped from the top branch (in all parts of this problem).]

(¢) (3 pt.) Suppose that Socrates has two acorns. Give a procedure so that she can identify
the correct branch using O(y/n) drops.
[We are expecting: Pseudocode AND a short English description of your algorithm,
and a justification of the number of drops. If it helps you may assume that n is a perfect
square.]

(d) (5 pt.) Suppose that Socrates has k = O(1) acorns. Give a procedure so that she can
identify the correct branch using O(n'/*) drops.

[We are expecting: Pseudocode AND a short English description of your algorithm,
and a justification of the number of drops. If it helps you many assume that n is of the
form n = m¥ for some integer m.]

(2 pt.) What happens to the runtime of your algorithm in part (d) when k = [log(n)] +
17 Is it O(log(n)), like in part (a)? Is it O(n'/*) when k = [log(n)] + 1, like in part (d)?
[We are expecting: A sentence of the form “the number of drops of my algorithm in
part (d) when k = [log(n)] + 1 is O(____)”, along with justification. Also, we are ex-
pecting two yes/no answers to the two yes/no questions (you should justify your answers
but do not need to include a formal proof). |

(NOT REQUIRED. 1 BONUS pt.) Is ©(n!/*) drops is the best that Socrates can
do with k acorns, for k = O(1)? Either give a proof that she can’t do better, or give an
algorithm with asymptotically fewer drops.

[We are expecting: Nothing. This part is not required.]

5. [Ducks in a row.] (12 pt.)

[Meta problem-solving skills: As the hint in part (b) suggests, you might want to consider
an algorithm you’ve already seen to solve this problem. In general, taking inspiration from
algorithms you already know is a good problem-solving technique!]

There are k flocks of ducks, and each flock has n ducks each. The k flocks are coming together
for a mixer, and for a particular event, they would like to sort all kn ducks by heightH Each
flock submits a height-ordered list of its ducks, and you (the organizer) are presented with k
ordered lists, Ay, ..., A, each of length n.

8300 20bb ~e0d

(a) (1 pt.) Your assistant, having just seen Lecture 2, is excited to try MergeSort on the
ducks. They suggest concatenating the lists (to get a big list of length nk), and then
running MergeSort on this big list. How long will this take?

[We are expecting: A single big-Oh expression. No justification is needed.

(b) (7 pt.) Suppose that k is significantly smaller than n. (For example, say that k =
O(logn)). Design an algorithm that is asymptotically faster than the algorithm sug-
gested in part (a) H
[Hint: Take inspiration from MergeSort.]

[We are expecting: Pseudocode AND a short English description of your algorithm;
AND a clear statement of the running time; AND an explanation for why this is
asymptotically faster than your answer in part (a) when k = log(n).

You do not need justify the running time, but you might want to do so for your own
confidence and/or for partial credit. You do not need to formally prove that your running
time is asymptotically faster than part (a), but you should give a clear explanation, don’t
Just write down two ugly expressions and assert that one is smaller than the other.]

(c) (4 pt.) Rigorously prove by induction that your algorithm is correct. If it’s relevant,
you may assume that the MERGE algorithm that we saw in class is correct. If it helps,
you may assume that k is a power of 2.

[We are expecting: A rigorous proof by induction. Make sure to clearly label your
inductive hypothesis, base case, inductive step and conclusion.

'Bonus points for coming up with the most creative description of this event. The course staff is going with an
elaborate duck line dance.

2Here, “asymptotically faster” means that if the running time of your algorithm is T'(n), and if To(n) is your
running time from part (a), then T'(n) = O(To(n)) but To(n) is not O(T'(n)).

