CS 161 Problem Set 3
Fall 2025 Due: Friday October 24 at 11:59pm on Gradescope.

Style guide and expectations: Please see the top of the “Homework” page on the course webpage
for guidance on what we are looking for in homework solutions. We will grade according to these
standards.

Make sure to look at the “We are expecting” blocks below each problem to see what we will
be grading for in each problem!

Collaboration policy: You may do the HW in groups of size up to three. Please submit one HW
for your whole group on Gradescope. (Note that there is an option to submit as a group). See the
“Policies” section of the course website for more on the collaboration policy.

LLM policy: Check out the course webpage for best practices on how to productively use LLMs
on homework, if you use them at all.

Exercises

We recommend you do the exercises on your own before collaborating with your group. The point
is to check your understanding.

1. (6 pt.) In this exercise, we’ll explore different types of randomized algorithms. We say that a
randomized algorithm is a Las Vegas Algorithm if it is always correct, but the running time
is a random variable. We say that a randomized algorithm is a Monte Carlo Algorithm if
there is some probability that it is incorrect. For example, QuickSort (with a random pivot)
is a Las Vegas algorithm, since it always produces a sorted array (but if we get very unlucky
QuickSort may be slow).

Suppose that there is a population of n ducks. Half of the ducks are green, and half are
brown, but it’s dark outside and you can’t tell the difference until you catch one and look at
it with a flashlight. Assume that catching a random duck and looking at it takes time O(1).

The algorithms given in Figure 1 all attempt to find a single green duck. Fill in the chart
below. You may use asymptotic notation for the running times; give the best big-Oh bound
that you can. For the probability of returning a correct duck, do not use asymptotic notation;
give the best bound that you can.

Algorithm Monte Carlo or | Expected Worst-case | Probability of returning
Las Vegas? running running a green duck
time time

Algorithm 1
Algorithm 2
Algorithm 3

Note that the IXTEX code for the table is available in the source file.

[Hint: Remember (see Lecture 5 and the pre-lecture exercise) that the expectation of a geo-
metric random variable with probability p is equal to %]

[We are expecting: A filled-in table. No justification is required.]

Algorithm 1: FINDGREENDUCK1

Input: A flock of n ducks
while true do
Choose a random duck from the flock;
if That duck is green then
L return that duck

else
L Release the duck back into the flock

Algorithm 2: FINDGREENDUCK?2

Input: A flock of n ducks
for 100 iterations do
Choose a random duck from the flock;

if That duck is green then
L return that duck

else
L Release the duck back into the flock
Choose a random duck from the flock;
return That duck

Algorithm 3: FINDGREENDUCK3

Input: A flock of n ducks
Put the ducks in a line, in a random order ;
/* Assume it takes time O(n) to put the n ducks in a random order; and
assume that they stay put once ordered. */
for i=0,....,n—1do
L if Duck © is green then
L return Duck i

Figure 1: Three algorithms for finding a green duck

2. (4 pt.) [Coloring RB Trees.|

Can you color in the nodes of the trees below to make legitimate red-black trees? For each
tree, either color the nodes to make a valid red-black tree, or say that no such coloring exists.

Note: the ITEX code to make these trees is included in the template. If you'd like to use
this code, you can color a node by editing it like:

\node [draw,circle,fill=red] or \node[draw,circle,fill=black].

Or you can just color the nodes in your favorite drawing program and include the image with
\includegraphics{my_image.png}.

[We are expecting: For each tree, either an image of a colored-in red-black tree or a
statement “No such red-black tree.” No justification is required.]

3. (5 pt.) This exercise references the IPython notebook HW3.ipynb, available on the course
website along with this problem set.

In our implementation of radixSort in class, we used bucketSort to sort each digit. Why did
we use bucketSort and not some other sorting algorithm? There are several reasons, and we’ll
explore one of them in this exercise.

(a) (2 pt.) One reason we chose bucketSort was that it makes radixSort work correctly! In
HW3.ipynb, we’ve implemented four different sorting algorithms—bucketSort, quickSort,
and two versions of mergeSort—as well as radixSort.

Note: The IPython notebook is long, but just because it implements many different
sorting algorithms. Don’t get scared!

There is a TODO statement in the IPython notebook where you can change the code to
use different sorting algorithms; you just have to make sure that the sorting algorithm
you want to use is the one that is not commented out. No programming necessary!

Modify the code for radixSort to use each one of these four algorithms within radixSort,
and test it out on the examples suggested.
Which sorting algorithms seem to be correct as “inner sorting algorithms” for radixSort?
e Does using bucketSort always work correctly?
e Does using quickSort always work correctly?
e Does using mergeSort (with mergel) always work correctly?
e Does using mergeSort (with merge2) always work correctly?

[We are expecting: Yes or no for each part.)

(b) (3 pt.) Explain what you saw above. What was special about the algorithms which
worked? Why does this special thing matter? (You may wish to play around with
HW3.ipynb to “debug” the incorrect cases.)

[We are expecting: A clear definition of the special property that the correct algorithms
have, and a few sentences explaining why it matters. A minimal example of what might
go wrong s a great way to explain why this property matters.

You do not need to justify why each of the algorithms do or do not have the property. |

Note: yes, this property is alluded to in the reading. That’s why this is an exercise and
not a problem! To get the most out of this exercise, play around with the examples in
the code and make sure you really understand what’s going on.

Problems

4. (6 pt.) [Ducks.] Suppose that n ducks are standing in a line.

Each duck has a political leaning: left, right, or center. You’d like to sort the ducks so that all
the left-leaning ones are on the left, the right-leaning ones are on the right, and the centrist
ducks are in the middle. You can only do two sorts of operations on the ducks:

Operation Result
poll(j) Ask the duck in position j about its political leanings
swap(i,j) | Swap the duck in position j with the duck in position i

However, in order to do either operation, you need to pay the ducks to cooperate: each
operation costs one piece of duckweed. Also, you didn’t bring a piece of paper or a pencil
(or your smartphone or tablet or tablet or whatever you use to take notes) so you can’t write
anything down and have to rely on your memory! Like many humans, your memory is limited,
and you can only remember up to seven! integers between 0 and n — 1 at a time (i.e. you can
use at most seven integer-valued variables at a time in your algorithm).

Design an algorithm to sort the ducks, which costs O(n) pieces of duckweed, and uses no
extra memory other than storing at most seven? integers between 0 and n — 1.

[Hint: Does this task look like anything we’ve seen in class? |

[We are expecting: Pseudocode AND a short English description of your algorithm; AND
a short explanation of why it uses only O(n) pieces of duckweed and never uses more than
seven numbers of memory.]

"https://en.wikipedia.org/wiki/The_Magical_Number_Seven, _Plus_or_Minus_Two
2You don’t need to use all seven storage spots, but you can if you want to. Can you do it with only two?

5. [Ducks.] (6 pt.) Suppose that n ducks of distinct heights are standing in a line, ordered

from shortest to tallest.

You have a measuring stick of a certain height, and you would like to identify a duck which
is the same height as the stick, or else report that there is no such duck. The only operation
you are allowed to perform is compareToStick(f), where f is a duck (that is, you cannot
directly access the heights of each duck). compareToStick(f) returns taller if f is taller
than the stick, shorter if f is shorter than the stick, and the same if f is the same height
as the stick. You’ve still forgotten to bring a paper and a pencil and so you can only store
up to seven integers in {0,...,n — 1} at a time. And you have to pay a duck one piece of
duckweed every time you perform compareToStick on it.

(a) (2 pt.) Give an algorithm in this model of computation which either finds a duck the
same height as the stick, or else returns “No such duck,” and uses O(log(n)) pieces of
duckweed.

[We are expecting: Pseudocode AND an English description. You do not need to
jJustify the correctness or duckweed usage.]

(b) (4 pt.) Prove that any algorithm in this model of computation must use Q(log(n))
pieces of duckweed.

[We are expecting: A short but convincing argument.]

6. [Goose!] (5 pt.) A wise goose has knowledge of an array A of length n, such that A[i] €
{1,...,k} for all i. (Note that the elements of A are not necessarily distinct). You don’t have
direct access to A, but you can ask the wise goose any yes/no questions about it. For example,
you could ask “If I remove A[5] and swap A[7] with A[8], would the array be sorted?” or “can
some geese fly as high as 29,000£t?”

Unlike in the previous problems, this time you did bring a paper and pencil, and your job is
to write down all of the elements of A in sorted order.® The wise goose charges one piece of
duckweed per question.*

Is 7 in the array?
A=16,2,4,3,3,5,2,1,2,6]

No.
Do you have \
tetrachromatic
- vision?

Yes. —

(a) (5 pt.) Give a procedure that outputs a sorted version of A which uses O(klog(n))
pieces of duck weed. You may assume that you know n and k, although this is not
necessary.

[We are expecting: Pseudocode AND a short English description of your algorithm;
AND a brief explanation of why it uses O(klog(n)) pieces of duckweed. |

(b) (1 BONUS pt.) Prove that any procedure to solve this problem must use Q(k log(n/k))
pieces of duckweed.

[We are expecting: Nothing; this part is not required.]

3Note that you don’t have any ability to change the array A itself, you can only ask the wise goose about it.
1Despite the name, it turns out that geese also eat duckweed.

