CS 161 Problem Set 4
Fall 2025 Due: Friday October 31 (%), at 11:59pm on Gradescope.

Style guide and expectations: Please see the top of the “Homework” page on the course webpage
for guidance on what we are looking for in homework solutions. We will grade according to these
standards.

Make sure to look at the “We are expecting” blocks below each problem to see what we will
be grading for in each problem!

Collaboration policy: You may do the HW in groups of size up to three. Please submit one HW
for your whole group on Gradescope. (Note that there is an option to submit as a group). See the
“Policies” section of the course website for more on the collaboration policy.

LLM policy: Check out the course webpage for best practices on how to productively use LLMs
on homework, if you use them at all.

Exercises

We recommend you do the exercises on your own before collaborating with your group. The point
is to check your understanding.

1. (3 pt.) In the IPython Notebook HW4 E1.ipynb, available on the website along with this
problem set, you will get black-box access to two families of hash functions, A and B. One of
these families is a universal hash family, and the other is not. The question for you is: which
is which? You can play around with these families on the Jupyter notebook to answer your
question.

[We are expecting: An answer to the question (is A or B the universal hash family?), along
with an explanation. Your explanation should include relevant quantitative facts about A and
B (a well-labeled graph would be okay too). You should explain what you computed/graphed,
and why it convinces you that your answer is correct. Make sure that your answer references
the definition of a universal hash family. You do not need to submit any code.]

2. (2 pt.) [Filling in a gap from Lecture 8] Let h be a uniformly random hash function
that maps values u in a set U to the output set {1,...,n}. Prove that if u; # w;, that the
probability Pr{h(u;) = h(u;)] = +.
[We are expecting: A short formal proof. It doesn’t need to be long, but make sure that

you explicitly use the fact that h(u;) and h(u;) are independent for i # j.|

3. (4 pt.) Consider the following directed graph G:



For the following parts you might want to use the website http://madebyevan.com/fsm/,
which allows you to draw directed graphs in ITEX. (Note: On a Mac, fn+Delete will delete
nodes or edges). It is also fine to include an image created in your favorite drawing program,
or a photo/scan of a hand-drawn graph.!

(a) (2 pt.) Draw the DFS tree for G, starting from node A. Assume that DFS traverses
nodes in alphabetical order. (That is, if it could go to either B or C, it will always
choose B first).

[We are expecting: A picture of your tree. No further explanation is required.]

(b) (2 pt.) Draw the BFS tree for G, starting from node A. Assume that BFS traverses
nodes in alphabetical order.

[We are expecting: A picture of your tree. No further explanation is required.]

. (5 pt.) Directed graphs are one of many ways to translate a messy real-world problem to
one that admits to algorithmic analysis. Recall from the first Embedded Ethics recorded
lecture, the case study from Bogotd’s Ministry of Transport, where the Ministry attempted
to measure the average speed of vehicles on roads using two spaced Bluetooth sensors. One
way they might make use of such information is in the generation of a directed graph like the
one in the previous exercise, where vertices represent locations of interest, and edge weights
represent the expected amount of time it would take for someone to travel from one vertex
to another.

(a) (3 pt.) Suppose the Ministry of Transportation used such a directed graph to help plan
routes for an expansion of their bus system.

What are two features of transportation infrastructure relevant to the problem of plan-
ning bus routes that are abstracted or idealized away in representing transportation
infrastructure as a directed graph?

[We are expecting: A short paragraph providing two relevant features of transporta-
tion infrastructure that are abstracted or idealized away. State the two features, explain
why they are relevant to the problem of bus routing, and explain why the directed graph
representation abstracts or idealizes away these features.]

f you want to use an LLM to generate BTEX code for a graph that you have come up with on your own, and
which you describe to the LLM, that’s fine; and it’s okay to copy-and-paste that LLM’s I¥TEX output to generate
your picture.



(b) (2 pt.) Are there any harmful downstream consequences of deciding bus routes while
abstracting or idealizing away the two features you stated in part (a)?
[We are expecting: 1-3 sentences identifying a possible harm of abstracting or ideal-
izing away the relevant feature stated in part (a)]



Problems

5. (12 pt.) [Painted Penguins.] A large flock of T" painted penguins will be waddling past the
Stanford campus next week as part of their annual migration from Monterey Bay Aquarium
to the Sausalito Cetacean Institute. Painted Penguins (not to be confused with pedantic
penguins) are an interesting species. They can come in a huge number of colors—say, M
colors—but each flock of T' penguins only has m colors represented, where m < T. The
penguins will waddle by one at a time, and after they have waddled by they won’t come back
again.

For example, if T' = 7, M = 100000 and m = 3, then a flock of T" painted penguins might

EEREEEER

seabreeze, seabreeze, indigo, ultraviolet, indigo, ultraviolet, seabreeze

You’ll see this sequence in order, and only once. After the penguins have gone, you’ll be
asked questions like “How many indigo penguins were there?” (Answer: 2), or “How many
neon orange penguins were there?” (Answer: 0).

You know m, M and T in advance (and you know the set of M possible colors), and you have
access to a universal hash family H, so that each function h € H maps the set of M possible
colors into the set {0,...,n — 1}, for some integer n. For example, one function h € H might
have h(seabreeze) = 5.

(a) (6 pt.) Suppose that n = 10m. Suppose also that you only have space to store:
e An array B of length n, which stores numbers in the set {0,...,T}, and
e one function A from H.

Use the universal hash family H to create a randomized data structure that fits in
this space and that supports the following operations in time O(1) in the worst case
(assuming that you can evaluate h € H in time O(1)):

e Update(color): Update the data structure when you see a penguin with color
color waddle by.

e Query(color): Return the number of penguins of color color that you have seen
so far. For each query, your query should be correct with probability at least 9/10.
That is, for all colors color,

9
P{Query(color) = the true number of penguins with color color } > 10

To describe your data structure:

i. Describe how the array B and the function h are initialized.



ii. Give pseudocode for Query.
iii. Give pseudocode for Update.

[We are expecting: A description following the outline above (including pseudocode),
and a short but rigorous proof that your data structure meets the requirements. Make
sure you clearly indicate where you are using the property of universal hash families.

(6 pt.) Suppose that you now have k times the space you had in part (a). That is,
you can store k arrays Bi,..., B and k functions hq,..., h; from H. Adapt your data
structure from part (a) so that all operations run in time O(k), and the Query operation
is correct with probability at least 1 — 10%.

[We are expecting: A description following the outline above (except say how all
arrays B; and functions h; are initialized), and a short but rigorous proof that your data
structure meets the requirements. Make sure you clearly indicate where you are using

the property of universal hash families.]



6. (6 pt.) [Badger badger badger.] A family of badgers lives in a network of tunnels; the
network is modeled by a connected, undirected graph G with n vertices and m edges (see
below). Each of the tunnels have different widths, and a badger of width = can only pass
through tunnels of width > z.

For example, in the graph below, a badger with width = 2 could get from vy to v4 (either by
vg — v1 — v4 or by vg — v3 — v4). However, a badger of width 3 could not get from vy to vy.

The graph is stored in the adjacency-list format we discussed in class. More precisely, G has
vertices stored as an array V of length n, and edges stored in an array E of length m. For
each i =0,...,n—1, V[i] stores a pointer to the head of a linked list IV;, which stores integers
that index E. If e is in N;, that means that the edge represented by E[e] touches the i’th
vertex. For each e, Ele] stores two integers (say, E[e][0] and Ele][1]) so that if i is in El[e],
then the 7’th vertex is an endpoint of that edge.

You have access to a function tunnelWidth, which runs in time O(1), so that if e is an edge
in G, (that is, an integer between 0 and m — 1 that indexes E), then tunnelWidth(e) returns
the width of the corresponding tunnel.

If it is helpful, you may assume access to a function BFS. Given a corresponding vertex array
V of pointers to linked lists, edge array F, and source vertex s € {0,...,n — 1}, you may
assume the function BFS(V, E, s) returns an array distance where distancel[i] is the number
of edges on the shortest path from s to node i (or -1 if ¢ is unreachable from s). The BFS
function runs in O(n + m) time.

[Actual questions on next page.]



(a) (6 pt.) Design a deterministic algorithm that takes as input G in the format above,

integers s,t € {0,...,n — 1}, and a desired badger width = > 0; the algorithm should
return True if there is a path from v, to vy that a badger of width x could fit through,
or False if no such path exists.

(For example, in the example above we have s = 0 and ¢t = 4. Your algorithm should
return True if 0 < z < 2 and False if z > 2).

Your algorithm should run in time O(n +m). You may use any algorithm we have seen
in class as a subroutine.

Note: In your pseudocode, make sure you use the adjacency-list format for G described
above. For example, your pseudocode should not say something like “iterate over all
edges in the graph.” Instead it should more explicitly show how to do that with the
format described. (We will not be so pedantic about this in the future, but one point of
this problem is to make sure you understand how the adjacency-list format works).
[We are expecting: Pseudocode AND an English description of your algorithm, and
a short justification of the running time. You should make sure to use the adjacency-list
representation of G described above in your pseudocode. You can use any algorithms we
have seen from class as a subroutine, but if you significantly modify them, make sure to
be precise about how this interacts with the adjacency-list representation.]

(0 pt.) [This part is OPTIONAL since this PSET is long enough. It won’t
be graded, but it’s good practice!] Design a deterministic algorithm which takes as
input G in the format above and integers s,t € {0, ...,n—1}; the algorithm should return
the largest real number x so that there exists a path from v, to vy which accomodates a
badger of width z. Your algorithm should run in time O((n 4+ m)log(m)). You may use
any algorithm we have seen in class as a subroutine. (Hint, use part (a)).

Note: Don’t assume that you know anything about the tunnel widths ahead of time.
(e.g., they are not necessarily bounded integers).
[We are expecting: Nothing, this part is optional! But if we were expecting something,

it would be: Pseudocode AND and English description of your algorithm, and a short
jJustification of the running time.]



