CS 161 (Stanford, Fall 2025) Section 1

Asymptotic Analysis

Asymptotic Analysis Definitions
Let f, g be functions from the positive integers to the non-negative reals.
Definition 1: (Big-Oh notation)

f = O(g) if there exist constants ¢ > 0 and ng such that for all n > nq,
f(n) < c-g(n).

Definition 2: (Big-Omega notation)

f = Q(g) if there exist constants ¢ > 0 and ng such that for all n > ng,
f(n) = c-g(n).

Definition 3: (Big-Theta notation)
f=0(g9) if f=0(g) and f =Q(g).

Note: You will use “Big-Oh notation”, “Big-Omega notation”, and “Big-Theta notation” A
LOT in class. Additionally, you may occasionally run into “little-oh notation” and “little-omega
notation™:

Definition 4:(Little-oh notation)

= o(g) if for every constant ¢ > 0 there exist a constant ng such that for all n > nq,
f(n) <c-g(n).
Definition 5:(Little-omega notation)
f = w(g) if for every constant ¢ > O there exist a constant ny such that for all n > nq,

f(n)>c-g(n).

1 Asymptotic Analysis Problems

1.1

For each of the following functions, prove whether f = O(g), f = Q(g), or f = ©(9g).
For example, by specifying some explicit constants ny and ¢ > 0 such that the definition of
Big-Oh, Big-Omega, or Big-Theta is satisfied. Bonus: prove little-Oh and little-Omega.

(a) f(n) = nlog(n®) g(n) = nlogn
(b) f(n) =22 g(n) =3"
(¢) f(n)= Z log i g(n) =nlogn

(a) f(n)=0©(g(n)). Since f(n) = nlog(n®) = 3nlogn. To prove Big-Oh, chose any
c above 3 (for example ¢ = 4), then f(n) = 3nlogn < 4nlogn = cg(n) Vn>
no of any ng of your choice. To prove big Omega, chose any c below 3 (for
example ¢ = 2, then f(n) = 3nlogn > 2nlogn = cg(n) VYn > ny of any ny of
your choice.

(b) f(n) =Q(g(n)). Since f(n) =22"=4" Chose c =1,ny =1, then f(n) = 4" >
1x3"=cg(n) Vn> ny. To disprove Big-Oh, use contradiction.

4" < 3"
nlog4 <logc+ nlog3

log ¢
n< ————
~ log4 —log3

log ¢

Togd—Tog3 " We have a contradiction.

So pick any c and n >
(c) Inspect summation

n
Zlogi:Iogl+I092—|—Iog3+...—i—Iogn
i=1

n
ZlogigIogn+|ogn—|—|ogn+...+|ogn
i=1

n
Zlog/ < nlogn
i=1

So we have proven Big-Oh.

In order to prove Big-Omega, inspect summation again

n
. n
Zlog/:Iogl+|092+|og3+...+Iog(§)+...—|-Iogn

=1

n n n n n
i = S lead = leal) == legl) <= 4= el

; ogi > i:ZH;Q 0gi > log(3) +109(5) + ... +10g(5)

; log/ > glog(g) = g(log(n) —l0g(2))

So
g(log(n) —1log(2)) > cnlogn
1 log 2
> log(n) — clogn > O%

(1—2c)logn>1

Now we can pick ¢g = 5, ny = 4

1.2
Give an example of f, g such that f is not O(g) and g is not O(f).

There are many such examples. Here is one:

f(n)=n.
1 ifnisodd
gn)=9 , .. . :
n- if nis even

1.3
Prove that if f = Q(g) then f is not in o(g).

Assume by contradiction that f = Q(g) and also f = o(g). By definition of (),
there exist constants ¢ and nq such that for all n > ngq,

f(n) = c-g(n). (1)

On the other hand, by definition of o(), there exists n, such that for all n > n,,

f(n) < c-g(n). (2)

Consider n which is greater than both nq and n, (e.g. their max +1). Then ([1)) and
(2)) should both hold, but this is a contradiction!

2 Matrix Multiplication

In lecture, you have seen how digit multiplication can be improved upon with divide and
conquer. Let us see a more generalized example of Matrix multiplication. Assume that we
have matrices A and B and we'd like to multiply them. Both matrices have n rows and n
columns.

For this question, you can make the simplifying assumption that the product of any two
entries from A and B can be calculated in O(1) time.

2.1

What is the naive solution and what is its runtime? Think about how you multiply matrices.

The naive solution is that we will multiply row by column to get each element of the
new matrix. Each new element of the new matrix is a sum of a row multiplied by a
column, which takes n time, and there are n® new elements to compute, resulting in a
runtime of O(n3).

2.2

Now if we divide up the problem like this:

sy _ |[A B][E F] _[AE+BG AF+BH
~|c D||6 H T |CE+DG CF+DH

We now have a divide and conquer strategy! Find the recurrence relation of this strategy and
the runtime of this algorithm.

The recurrence relation of this approach is T(n) = 8T (£) + O(n?) because you have
8 subproblems, and cutting subproblem size by 2, while doing n? additions to combine
the subproblems. Using the recurrence, we know that at the last level of recursion we

will have 8/°9(" subproblems of size 1.

8/og(n) — nlog(8) — n3

Thus, this approach is at least O(n®). Looks like we did not improve the running time
at alll

2.3

Can we do better? It turns out we can by calculating only 7 of the sub problems:
P, = A(F — H) Ps=(A+ D)(E+ H)
P,=(A+ B)H Ps=(B—D)(G+ H)
P,=D(G—E)

And we can solve XY by

Ps+ Py — P+ Ps P+ P,

XY =
P+ Py Pr+PB—-P—-F

We now have a more efficient divide and conquer strategy! What is the recurrence relation
of this strategy and what is the runtime of this algorithm?

The recurrence relation of this algorithm is T (n) = 7T (3) + O(n?) because you have
7 subproblems, and cutting subproblem size by 2, while doing n? additions to combine
the subproblems. Using similar calculation to above, we calculate the runtime of this

method to be ~ n?8!.

3 How NOT to prove claims by induction

In this class, you will prove a lot of claims, many of them by induction. You might also prove
some wrong claims, and catching those mistakes will be an important skill!

The following are examples of a false proof where an obviously untrue claim has been 'proven’
using induction (with some errors or missing details, of course). Your task is to investigate
the 'proofs’ and identify the mistakes made.

3.1

Fake Claim 1:

1 N 1 N 3
12 2.3 702

n terms

S|

(3)

Inductive Hypothesis: (3]) holds for n = k

Base Case: For n =1,)

1-2
Inductive Step: Suppose the inductive hypothesis holds for n = k; we will show that it is
also true for n = k+ 1. We have

1 1 1 1

(ﬁ+ﬁ+"'(k—l)-k)+k-(k+l):g_%+% (by weak induction hypothesis)
3 1.1 1
T2k Tk k+1
31
T2 k+1

Conclusion: By weak induction, the claim follows.

The first part of the long derivation of the inductive step is wrong — the summation
In the parentheses only contains kK — 1 summands! It should contain k terms, so it is
missing the last term.

4 Induction: Snowball Fight

On a flat ice sheet, an odd number of penguins are standing such that their pairwise distances
to each other are all different. At the strike of dawn, each penguin throws a snowball at
another penguin that is closest to them. Show that there is always some penguin that
doesn’t get hit by a snowball.

Claim: For every non-negative number n, if there are 2n+1 penguins, then there exists
a penguin that doesn’t get hit by a snowball.

Inductive hypothesis: The above claim holds for all n < k.

Base Case: When n = 1, there are 3 penguins. Since the pairwise distances between
these penguins are different, 2 of these penguins must form the closest pair, and will
throw their snowballs at each other. Thus, the third penguin will not get hit with any
snowball.

Inductive Step: Suppose the inductive hypothesis holds for n < k; we will show that
it also holds for n = k + 1. There are 2(k + 1) + 1 penguins. Choose any 2 penguins
that are closest to each other and call them A and B. These two penguins will throw
snowballs at each other. Then, there are 2k+1 penguins remaining and by the inductive
hypothesis, at least one of these penguins will not get hit by a snowball.

Conclusion: By induction, the claim follows.

5 Skyline (Pseudocode and Big-0)

You are handed a scenic black-and-white photo of the skyline of a city. The photo is n-pixels
tall and m-pixels wide, and in the photo, buildings appear as black (pixel value 0) and sky
background appears as white (pixel value 1). In any column, all the black pixels are below all
the white pixels. In this problem, you will design and analyze efficient algorithms that find the
location of a tallest building in the photo. (It could be that there are multiple tallest buildings
that all have the same height; in this case, your algorithm should return any one of them.)

The input is an n x m matrix (for n, m > 1), where the buildings are represented with 0s, and
the sky is represented by 1s. The matrix is indexed from top to bottom, from left to right.
Each column of the matrix has a single building that is represented by 0's. The output is an
integer representing the location of a tallest building. For example, for the input 6 x 5 matrix
below, A[0,0] =1, A[3,0] =0, A[3,2] = 1, a tallest building has height 5 and is in location
1 (assuming we are O-indexing). Thus the output is 1.

(=T = e R
ococoocor
(= e
ocococor~
cococor~

5.1

Find an algorithm that finds a tallest building in time O(mlog n). You may assume that your
input is a n x m matrix A, and you may access an element in the /-th row and j-th column
iIn constant time.

At a high level, we perform a row-wise binary search. More precisely, we split the
current matrix in half; if there is at least one zero in the middle row, we recurse on
the top half (that contains the middle row), and if not, we recurse on the bottom half.
We stop when we see there is only one row left in the matrix, and at this point simply
return the index of any column that has a 0, since this will correspond to the tallest

building.
Pseudocode:
def TallestTower(an n x m matrix A):
if n ==
for j =0, ..., m-1:
if A0, j] ==
return j

return "There are no buildings in this city!"
if A[n//2, :] has at least one zero:
return TallestTower(A[:n//2, :]) //assuming the
current array notation is right-inclusive
else:
return TallestTower(A[n//2 + 1:, :1)

Note that there are multiple ways to do this part, including returning early if a certain
row contains exactly one zero (only one building even reaches that height). Another
one is to do a binary search on each building to find the height, and then return the
largest.

5.2

Find an algorithm that finds a tallest building in time O(m+n) and write it out in pseudocode.
You may assume that your input is a n x m matrix A, and you may access an element in the
i-th row and j-th column in constant time.

Starting with the bottom left corner, move upwards until you see a 1, and then move
right until we see a 0, and repeat until we reach the rightmost column. The tallest
building is height n —/ — 1 where / is the row we finish on, with the exception that if
we hit the top of the photo, then the height of the tallest building is height n — / with
i = 0. Each time we move either upwards or rightwards (note that the / variable only
decreases), so at most m + n steps are made.

Pseudocode:

def TallestTower(an n x m matrix A):
best = None

i=n-1
if n > O:
for j =0, ..., m-1:
if Ali, jl == O:
best = j
// move up until we hit the sky or top of photo
while A[i, j] == 0 and i > O:
i1 == i
return best

Again, we note that there are multiple ways to write pseudocode for this part, including
returning early if we hit the top of the photo (that building must be the tallest) or
having slightly different loops.

5.3

For some values of (n, m) the algorithm from part (a) is more efficient, while for others, the
algorithm from part (b) is more efficient. For each of the values of n in terms of m below,
determine which of the above algorithm runtimes is more efficient (or that they are equally
efficient) in terms of big-O notation. The case n = mis filled in as an example (in blue).

n=72 ‘ 100 ‘ vm ‘ g m m ‘ mlogm ‘ 2m
Runtime for (a) O(mlogm)
Runtime for (b) O(m)
Which is better? (b)

n=71 \ 100 | vm | wm | m \ mlog m | 27
Runtime for (a) O(m) O(mlogm) | O(mlogm) | O(mlog m) O(mlog m) o(m?)
Runtime for (b) O(m) O(m) O(m) O(m) O(mlog m) o(2m)

(a)

(b) (b) equally efficient

Which is better?

(b)

equally efficient

	Asymptotic Analysis Problems
	
	
	

	Matrix Multiplication
	
	
	

	How NOT to prove claims by induction
	

	Induction: Snowball Fight
	Skyline (Pseudocode and Big-O)
	
	
	

