CS 161 (Stanford, Fall 2025) Section 5 Extra

1 True or False

1. Djikstra’'s can be used for successfully finding the shortest path from a source to all
other vertices in a graph with negative edges, but not with negative cycles.

False. Consider the following case:

Once Dijkstra has marked node B as "I'm sure" with cost 5, it will not try to
find another path to B. Thus, it will never update the cost to 1.

J

2. To find the shortest path from one vertex to another in an unweighted graph, you
should use Dijkstra’s algorithm as it is the most efficient solution.

False. For an unweighted graph, you should use BFS. It is more efficient be-
cause it does not need a data structure that can handle fast operations of type
extractMin() and decreaseKey().

3. Adding a new positive edge to an undirected weighted graph with positive edges cannot
lead to the output values of Dijkstra’s increasing.

True. Adding a new edge to the graph can have the following possibilities:
(a) If the edge is in the new shortest path to a vertex v from source s, then
the minimum cost will reduce.
(b) If the edge is not in the new shortest path to a vertex v from source s,
then the minimum cost will not be affected.
In either case, the cost of the shortest path can only decrease.




2 Hyperlinks can go backward?

On the internet, many pages have links pointing to other pages, but sometimes it's not
possible to reach a site you were on previously without clicking the “back” button in your
browser. Elgoog can model their website as a directed graph G with n pages, and each page
has some number of links to other pages. There are a total of m links over all these pages.
Currently, it's not possible to get from some pages to some other pages without clicking
the back button, and sometimes not possible at alll They want your help in designing an
algorithm which can output the minimum total number of extra links they need to add so
that every page is reachable from every other page.

1. In the given graph, find the minimum number of links that Elgoog must add.

o¥0
G 2
0

The answer is 4. To see this, first suppose we just had the AGEFB subgraph.
Here, we can connect F to A and B to G to get 2. Now, add in H: connect B
to H and H to G instead of just having B to G. Finally, replace the B to H edge

with B to C and D to H edges. So, the total edges added are F to A, Bto C, D
to H, H to G. Here's the new graph:




2. Suppose G is a directed, acyclic graph (DAG) where every sink is reachable from every
source. Define S C V as the set of source nodes: those vertices with no incoming
edges and T C V as the set of sink nodes: those vertices with no outgoing edges.
Prove that the minimum number of links which have to be added is max(|S|, |T]).

Note that each source vertex must have at least one incoming edge added, and
each sink vertex must have at least one outgoing edge added. Hence, we have a
lower bound of max(|S|,|T|). To achieve this, assume without loss of generality
that |S| > |T| (there are more sources than sinks). Add one edge to each source
from some sink, making sure that each sink gets at least one outgoing edge and
each source gets exactly one incoming edge.

Since in the original graph there is a path from each source to each sink, adding
all such edges implies that there is a path from any sink v € T to any other sink
v € T and hence (by construction) to any source w € S. Therefore, there is a
path from every sink to every other node in the graph. Then, since from every
node in the graph there is a path to a sink, this implies that there is a path from
every node to every other node.

3 Currency conversion

Suppose the various economies of the world use a set of currencies Cy, C», ..., C, — think of
these as dollars, pounds, bitcoins, etc. Your bank allows you to trade each currency C; for
any other currency C;, and finds some way to charge you for this service (in a manner to be
elaborated in the subparts below). We will devise algorithms to trade currencies to maximize
the amount we end up with.



3.1 Flat fees

Suppose that for each ordered pair of currencies (C;, C;) the bank charges a flat fee of f;; > 0
dollars to exchange C; for C; regardless of the quantity of currency being exchanged). Devise
an efficient algorithm which, given a starting currency Cs, a target currency C;, and a list of
fees f;; for all i,j € {1,2,..., n}, computes the cheapest way (that is, incurring the least in
fees) to exchange all of our currency in Cs to currency C;. Justify the correctness of your
algorithm and its runtime.

Build the complete graph on the currencies with weights equal to the corresponding
fees; ie. G = (V,E,w) where V = {Cy,....C,}, E = {(C;,C)) : i # j}, and
w(C;, C;) = f;j. Run Dijkstra’s algorithm from Cs and return a shortest path C; — C;.

Correctness: Notice that any path from Cs to C; in G indicates a sequence of
exchanges, and that its total weight is precisely the sum of the fees needed to
perform those exchanges. Thus it suffices to find a Cs — C; path in G of minimum
weight. Note that the fj;'s are all positive, so this is a valid input to Dijkstra’s algorithm.

Running time: O(n?) total. Since all exchange pairs are possible, we have m = (g) =
©(n?) edges. This is also how long it takes to build G. Dijkstra’s algorithm therefore
takes O((n? + n)log n) = O(n?logn) time.

3.2 Exchange rates

Consider the more realistic setting where the bank does not charge flat fees, but instead uses
exchange rates. In particular, for each ordered pair (C;, C;), the bank lets you trade one unit
of C; for rjj units of C;, i.e. you receive rj; units of C; in exchange of one unit of C;. Devise an
efficient algorithm which, given starting currency Cs, target currency C;, and a list of rates
rij, computes a sequence of exchanges that results in the greatest amount of C;. Justify the
correctness of your algorithm and its runtime.

Build G = (V, E,w) as in part (a), but with weights w(C;,C;) = —log(r;). Run
Bellman-Ford from Cs and return a shortest path Cs — C;.

Correctness: As in part (a), a sequence of exchanges corresponds to a path in G.
However, we want a path C;, = G, Cj,, ..., C;, = C; here that maximizes Hf;ll Fitviieg
Since log is a monotonically increasing function (i.e. if a > b then log(a) > log(b)),
this is the same as maximizing log([]/=; liiiag) = iy log(r;.i.,). Finally, this is
equivalent to minimizing 31" —log(r;.i.,) = S5y w(C;, C;.,), which is the shortest

path objective. Note that we must use Bellman-Ford rather than Dijkstra’s algorithm,




since these weights may be negative.

Running time: O(n®) total. G can be built in time O(n?) time, and Bellman-Ford
takes O(n?) time since we have ©(n?) edges.

3.3 Making money

Due to fluctuations in the markets, it is occasionally possible to find a sequence of exchanges
that lets you start with currency A, change into currencies, B, C, D, etc., and then end
up changing back to currency A in such a way that you end up with more money than you
started with—that is, there are currencies C;, ..., C; such that

livip X Figig X oo o X iy X Fjy > 1.

Devise an efficient algorithm that finds such an anomaly if one exists. Justify the correctness
of your algorithm and its runtime.

This problem is essentially trying to find a negative cycle in the graph. We can
do this using the same graph in part (b) and run Bellman-Ford to check if in any
iteration of the Bellman-Ford algorithm whether there is a negative cycle in G. If
there is, the cycle is the anomaly, which means trading in the cycle will result in a profit!

Correctness: A currency anomaly Hf;ll fiin, > 1 implies (by the same log manip-
ulations we did in part (b)) that S/} w(C;. Ci,,) = f;ll—log(r,-,v,-,ﬂ) < 0. Thus

there is a negative cycle in G, which can be found by an extra iteration of Bellman-Ford.

Running time: O(n®) total. We are still using the same algorithm in part (b) but
having a different objective. Once we realize that there is a negative cycle, we must
have one more iteration to find the exact cycle which takes O(|E|) = O(n?) time.




	True or False
	Hyperlinks can go backward?
	Currency conversion
	Flat fees
	Exchange rates
	Making money


