
CS 161 (Stanford, Fall 25) Section 6 Extra

1 Graph Algorithms

The Floyd–Warshall algorithm runs in O(n3) time on graphs with n vertices and m edges,
whether or not the input graph contains a negative cycle. Modify the Floyd–Warshall algo-
rithm so that it will detect negative cycles and stop faster. Specifically, design an algorithm
with the following behavior:

• If the input graph contains no negative cycle, the algorithm should compute all-pairs
shortest paths in the usual O(n3) time.

• If the input graph does contain a negative cycle, the algorithm should detect this in
only O(mn) time.

Hint: Can we try creating a new vertex and some associated edges, then use a different
algorithm that runs in time O(mn)?

Solution

Modify the input graph G = (V, E) by adding a new source vertex s and a new zero-
length edge from s to each vertex v ∈ V . The new graph G ′ has a negative cycle
reachable from s if and only if G has a negative cycle. Run the Bellman–Ford algorithm
on G ′ with source vertex s to check whether G contains a negative cycle. If not, run
the Floyd–Warshall algorithm on G.

2 Rod Cutting

Suppose we have a rod of length k , where k is a positive integer. We would like to cut the rod
into integer-length segments such that we maximize the product of the resulting segments’
lengths. Multiple cuts may be made. For example, if k = 8, the maximum product is 18 from
cutting the rod into three pieces of length 3, 3, and 2. Write an algorithm to determine the
maximum product for a rod of length k .

Solution

To solve this problem we are going to exploit the following overlapping sub-problems.
If we let f (k), be the maximum product possible for a rod of length k , then we have

f (k) = max
c∈{2,k−1}

(k, c · f (k − c))

Another way to think of this is that we are going to try cutting the rod of length k into
two rods of length c and k − c and try all possible values of c , taking the one which

1

produces the maximum product. Note that not cutting the rod at all is another option
which we can take. Also notice that we do not need to consider cutting off a length of
1 since that will never yield the optimal product, and also do not need to try cuts any
larger than ⌊k/2⌋ since those will already have been explored due to the symmetry of
the cutting. The running time for this algorithm is O(k2) since for each value of k we
loop through O(k) values to get the answer for that k .

def max_rod_cut (k) :

max_prods [i] := l a r g e s t p r oduc t f o r
c u t t i n g rod o f l e n g t h i
max_prods = [0 f o r _ i n range (k + 1)]
max_prods [1] = 1 # l e n g t h 1 cannot be cu t more

f o r i i n range (2 , k + 1) :

best_prod = i # compare a g a i n s t not c u t t i n g a t a l l
f o r cu t i n range (2 , i // 2 + 1) :

r ema i n i n g = i − cut # the l e n g t h r ema i n i n g
p = max_prods [cu t] ∗ max_prods [r ema i n i n g]
best_prod = max(best_prod , p)

max_prods [i] = best_prod

r e tu rn max_prods [k]

3 Matrix Chain Multiplication

Consider a scenario in which we would like to multiply a lot of matrices, with matrix Ai ’s
dimensions given as pi−1 × pi . The goal is to determine the most efficient order in which to
multiply the matrices, so that the total number of scalar multiplications is minimized. Note
that matrix multiplication is associative, so the result does not depend on how the matrices
are parenthesized, but the number of operations does.

Note that if A is a p × q matrix and B is a q × r matrix, then their product AB is a p × r
matrix. Computing this product requires

p · q · r

scalar multiplications, since each of the pr entries in the result is obtained by taking a dot
product of length q.

Example. Suppose we have only the first three matrices A1 (10× 30), A2 (30× 5), and A3

2

(5× 60), so p = [10, 30, 5, 60]. There are two possible parenthesizations:

(A1A2)A3 and A1(A2A3).

For the first, the cost is:

(10× 30× 5) + (10× 5× 60) = 1500 + 3000 = 4500.

For the second, the cost is:

(30× 5× 60) + (10× 30× 60) = 9000 + 18000 = 27000.

Thus, the optimal order is (A1A2)A3.

Give the recurrence relation for performing dynamic programming on this problem, and also
give pseudocode.

Solution

Let m[i , j] denote the minimum number of scalar multiplications required to compute
the product AiAi+1 · · ·Aj .
The dynamic programming recurrence is:

m[i , j] =

0, if i = j,

min
i≤k<j

(m[i , k] +m[k + 1, j] + pi−1pkpj) , if i < j.

The algorithm builds up solutions for increasing chain lengths:
MATRIX-CHAIN-ORDER(p)

n = length(p) - 1
m = n x n 2D table
for i = 1 to n

m[i,i] = 0
for l = 2 to n // chain length

for i = 1 to n - l + 1
j = i + l - 1
m[i,j] = +inf
for k = i to j - 1

q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]
if q < m[i,j] then

m[i,j] = q
return m

3

	Graph Algorithms
	Rod Cutting
	Matrix Chain Multiplication

