
CS 161 (Stanford, Fall 2025) Section 6

1 Algorithm Practice

Given the directed graph below, run the Floyd-Warshall Algorithm, processing vertices in
alphabetical order. Fill in the table below which keeps track of the shortest paths. Ordered
pairs of vertices with no directed path (such as (B,A)) are omitted and their distance can
be taken as ∞ for updates.

A

B

C

D

20

4

5

12

6

Solution

The completed table is shown below:

(A,A) (A,B) (A,C) (A,D) (B,B) (B,C) (B,D) (C,C) (C,D) (D,D)

0 4 12 20 0 5 ∞ 0 6 0
0 4 12 20 0 5 ∞ 0 6 0
0 4 9 20 0 5 ∞ 0 6 0
0 4 9 15 0 5 11 0 6 0
0 4 9 15 0 5 11 0 6 0

2 Knapsack

Consider an instance of the knapsack problem with five items (where there is only one copy
of each item):

1

Item Value Size
1 1 1
2 2 3
3 3 2
4 4 5
5 5 4

and knapsack capacity C = 9.

What are the final array entries of the Knapsack algorithm from lecture, and which items
belong to the optimal solution?

Solution

With columns indexed by i and rows by c :

c\i 0 1 2 3 4 5

9 0 1 3 6 8 10

8 0 1 3 6 8 9

7 0 1 3 6 7 9

6 0 1 3 6 6 8

5 0 1 3 5 5 6

4 0 1 3 4 4 5

3 0 1 2 4 4 4

2 0 1 1 3 3 3

1 0 1 1 1 1 1

0 0 0 0 0 0 0

Optimal items: {2, 3, 5}.

3 Encoding

Suppose we encode lowercase letters into a numeric string as follows: we encode a as 1, b
as 2, . . . , and z as 26. Given a numeric string S of length n, develop an O(n) algorithm to
find how many letter strings this can correspond to. For example, for the numeric string 123,
the algorithm should output 3 because the letter strings that map to this numeric string are
abc, lc, and aw .

Solution

Intuitively, a one digit substring can be decoded to a letter if it’s > 0, and a two digit
substring can be decoded to a letter if it’s between 10 and 26 (inclusive).
To turn this into a dynamic programming problem, we can count the number of ways
to decode the substring ending at i . (ie the substring S[0 : i + 1] in python notation).
We start at i = 0 and build up.

2

If we know the number of ways to decode the substring ending at k − 1 (S[0 : k]), we
can use that information to count the number of decodings for the substring ending at
k (S[0 : k + 1]). If the last digit isn’t zero, we can convert that to a letter directly,
and check the array for the number of decodings for S[0 : k] to get the total number
of decodings here. If the last two digits make a valid letter (between 10 and 26
inclusive), the total number of decodings using this option is equal to the total number
of decodings for the substring S[0 : k − 1]. If both interpretations are valid, we add
the number of decodings from the first case to the number of decodings for the second
case to get the total number of decodings.
Let f (i) denote the number of ways to encode the string up to and including S[i]
establish our recurrence as follows:

f (i) =
∑{

f (i − 1) S[i] ∈ {1, ..., 9}
f (i − 2) S[i − 1 : i + 1] ∈ {10, ..., 26}

To compute this in a single forward pass using dynamic programming, we build a table
for each f (i) and initialize base cases for f (0) and f (1), as shown below. We set up an
array of size n and fill in each element, and return the last element. Because it takes
time O(n) to iterate through our array and O(1) time to fill in a given array element,
the total runtime of our algorithm is O(n).

def num_decodings (n ume r i c_ s t r i n g) :
n = l en (n ume r i c_ s t r i n g)
t [i] := how many p o s s i b l e d e c o d i n g s f o r s [: i]
t = [0 f o r _ i n range (n)]

base c a s e s f o r 0 and 1
t [0] = i n t (n ume r i c_ s t r i n g [0]) >0
two_digit_num = i n t (n ume r i c_ s t r i n g [: 2])
t [1] = 10 <= two_digit_num <= 26
i f i n t (n ume r i c_s t r i n g [1]) > 0 :

t [1] += t [0]

f o r i i n range (2 , n) :
i f i n t (n ume r i c_s t r i n g [i]) > 0 :

t [i] += t [i −1]

two_digit_num = nume r i c_ s t r i n g [i −1: i +1]
i f 10 < two_digit_num <= 26 :

t [i] += t [i − 2]

r e tu rn t [−1]

3

4 Knight Moves

Given an 8×8 chessboard and a knight that starts at position a1, devise an algorithm that
returns how many ways the knight can end up at position xy after k moves. Knights move
±1 squares in one direction and ±2 squares in the other direction. In other words, knights
move in a pattern similar to a ”L”.

Note: on a chessboard, rows are labeled from 1-8 and columns are labeled from a − h.

Solution

We can store an array of the number of paths to each position after i moves, for each
i . The base case is simple - after 0 moves, the knight has one way to end up in his
starting position - not move at all!

If we know how many ways to get to each of the positions after round i −1, to get the
number of ways they could move to some xy , we would add up the total number of
ways they could have gotten to any of his last steps — 1 away in some direction and 2
away in the other. For example, there are 3 ways to get to a2 - either from c1, c3, or
b4 - so we would simply add up the number of ways to get to each of these positions
after i − 1 steps to count how many ways to end up in position a2 after i steps.
Finally, once we compute the array for k , we can return position xy . (Notice that even
though we only cared about position xy , we still computed the number of ways to get
to any point on the chessboard in the previous steps - this is because these points could
be on the path, despite not being the end point.)
More formally, we can define the function f (x, y , i) to be the number of ways the knight
can get to position xy in i moves. This gives us the following recurrence: (written out
for clarity)

f (x, y , i) =f (x − 1, y − 2, i − 1) + f (x − 1, y + 2, i − 1) + f (x + 1, y − 2, i − 1)
+ f (x + 1, y + 2, i − 1) + f (x − 2, y − 1, i − 1) + f (x − 2, y + 1, i − 1)
+ f (x + 2, y − 1, i − 1) + f (x + 2, y + 1, i − 1)

(where the function evaluates to 0 if the position is off the board)

def k n i g h t moves (end_pos i t i on , num_moves) :
num_ways s t o r e s how many ways
to ge t to each r e a c h a b l e p o s i t i o n
num_ways = c o l l e c t i o n s . d e f a u l t d i c t (i n t)
num_ways [(0 , 0)] = 1 #(0 ,0) c o r r e s p o n d s to A1
move_d i r e c t i o n s = [(1 , 2) , (1 , −2) , (−1 , 2) ,

(−1 , −2) , (2 , 1) , (2 , −1) , (−2 , 1) , (−2 , −1)]

f o r i i n range (num_moves) :

4

new_num_ways = c o l l e c t i o n s . d e f a u l t d i c t (i n t)
f o r cur_row , cu r_co l i n num_ways . k e y s () :

f o r move_row , move_col i n move_d i r e c t i o n s :
new_row = cur_row + move_row
new_col = cu r_co l + move_col
check to make s u r e new p o s i t i o n
s t a y s w i t h i n the board
i f new_row >= 0 and new_row < 8 and

new_col >= 0 and new_col < 8 :
new_num_ways [(new_row , new_col)] +=

num_ways [(cur_row , cu r_co l)]
num_ways = new_num_ways

r e tu rn num ways [end p o s i t i o n]

Runtime and number of DP States: At each step i , the algorithm keeps track of the
number of ways to reach every square on the 8× 8 board. This means we have

64 positions× (k + 1) layers = 64(k + 1)

total DP states, which is O(k). Note that in practice we only keep track of the current
64 states, so we can reduce the number of states we keep down to a constant.

For each state (x, y , i), the recurrence considers up to 8 possible knight moves, each
of which can be checked in O(1) time. Thus, the total runtime is O(64k · 8) = O(k).

5

	Algorithm Practice
	Knapsack
	Encoding
	Knight Moves

