CS 161 (Stanford, Fall 2025) Section 7 Extra

1 Pareto Optimal

Given a set of 2d points P, a Pareto optimal point is a point (x, y) such that V(x’,y’) we
have either x > x’ or y > y’. Develop an algorithm to to find all Pareto optimal points.

First sort the points by decreasing x coordinate and break ties using y. Clearly in this
sorted list the first point is guaranteed to be Pareto optimal (as it has the largest x
coordinate and the largest y amongst points with that x).

Now, as we progress down our input list, each subsequent point has either equal or
smaller x coordinates. Therefore, the only way that it could possibly be a Pareto point
is if it has a larger y coordinate than the previous points we have seen. This is because
this point has a larger y coordinate than the previous points we have seen (since it
broke the Y record), a larger y coordinate than the points with the same x coordinate
(since we break ties by y), and a larger x coordinate than the rest of the points (since
the list is sorted by x).

Therefore, we save the value of the largest y coordinate we have yet encountered,
and a Pareto point lower in the list must have a larger y coordinate than our saved value.

The total runtime is O(nlog n) due to sorting.

Data: list of points (z,,y,)
sort input points (largest first) by x coordinate, then tiebreak by y
initialize pareto points array with first point from the sorted list
set Y to y coordinate of that point
for point in sorted input do

if y coordinate of point > Y then

add point to pareto points array

\; L update Y to the y coordinate of this point

return pareto points array

2 Roads and Airports

Given a set of n cities, we would like to build a transportation system such that there is some
path from any city / to any other city j. There are two ways to travel: by driving or by flying.
Initially all of the cities are disconnected. It costs rj; to build a road between city / and city
J. It costs a; to build an airport in city /. For any two cities / and j, we can fly directly from



I to J if there is an airport in both cities.

Give an efficient algorithm for determining which roads and airports to build to minimize the
cost of connecting the cities.

To find the roads and airports to build, we first note that there are two cases: either
we do not build any airports or we build at least one airport.

To consider the case where we do not build any airports, we construct an undirected
graph where the cities are the nodes and the roads are the edges with weights
corresponding to the cost of building that road. We then construct the MST
of this graph. This gives us the minimum construction cost using no airports.
(If we constructed a non-tree connected graph, we could always remove a road to
decrease cost without disconnecting the graph, so the optimal solution must be a tree.)

Then we consider the case where we choose to build at least one airport. To model
this, we construct a slightly different graph. We start with the same graph from the
previous case: an undirected graph where the cities are the nodes and the roads are
the edges with weights corresponding to the cost of building that road. We then
add another node to the graph, representing the air. Call this node a. We add an
undirected edge between every city / and a with weight a;. We then construct the
MST of this graph.

To find the overall minimum cost set of roads and airports to build, we use either the
MST from the first case or the MST from the second case, whichever has lower total
cost. For every edge in the MST between two cities / and j, we build road between |
and J, or for every edge between a city / and a the airport node, we build an airport in
City /.

The total runtime is O(nlog n+ m) by using a Fibonacci Heap to implement the Prim's
algorithm.




	Pareto Optimal
	Roads and Airports

