CS 161 (Stanford, Fall 2025) Section 3

1 Expectation

1. True or False: Expected runtime averages the runtime over the outcomes of random
events within the algorithm for a random input.

2. | have an algorithm that takes positive integers (n, i) where 1 </ < n. The algorithm
rolls a n-sided die repeatedly until the die returns any value < /. What is the expected
runtime in n? Worst-case runtime? Rigorous proof not necessary :)

2 Light Bulbs and Sockets

You are given a collection of n differently sized light bulbs that have to be fit into n sockets
in a dark room. You are guaranteed that there is exactly one appropriately-sized socket for
each light bulb and vice versa; however, there is no way to compare two bulbs together or
two sockets together as you are in the dark and can barely see! You can try and fit a light
bulb into a chosen socket, from which you can determine whether the light bulb’s base is too
large, too small, or is an exact fit for the socket.

Suggest a (possibly randomized) algorithm to match each light bulb to its matching socket.
Your algorithm should run strictly faster than quadratic time in expectation. Give an upper
bound on the worst-case runtime, then prove your algorithm’s correctness and expected
runtime.

3 Batch Statistics

Design an algorithm which takes as input array A consisting of n possibly very large integers
as well as an array R that contains k ranks ry, ..., r,, which are integers in the range {1, ..., n}.
(You may assume that k < n.) The algorithm should output an array B which contains the
ri-th smallest of the n integers, for every j in 1,..., k. So if an r; = 3 in input array R, then
we want to return the 3rd smallest element in the input array A as part of the output.

Input: A which is an unsorted array of n unbounded distinct integers; R which is an unsorted
array of k distinct ranks.

Example:
e Input: A=[11,19,13,14,16,18,17,12,15]; R = [3, 7]
e Output: [17,13]

e Explanation: 17 is the 7th smallest element of A and 13 is the 3rd smallest of A.
[13, 17] is also an acceptable output.

Hint: we are looking for an O(n/ogk) runtime algorithm.

4 Sorting with Low Adaptivity

Sometimes, the steps of an algorithm don’t depend on one another - this happens frequently
in real world settings. When we have such an “independence" between steps, we can use
parallelization to speed up the algorithm! (Outside this question we won't spend much time
discussing this issue in this class.)

1. We say that a comparison-based sorting algorithm is non-adaptive if it commits in
advance to the pairs of elements that it will compare. In other words, when choosing
a comparison at step k, the algorithm does NOT rely on information from previous
comparisons at steps (1,...,k — 1). Prove that any non-adaptive sorting algorithm
requires €2(n?) comparisons.

2. Now we define a “stage" of operations as an arbitrary-sized set of operations that all
occur simultaneously. We say that a comparison-based sorting algorithm has adaptivity
t if it can be executed in t + 1 stages, where the pairs to be compared in the /-th
stage only depend on outcome of comparisons in stages 1, .. ., i — 1 (but not on other
comparisons in the /-th stage). For example, non-adaptive algorithms have 0 adaptivity.

What is the adaptivity of the MergeSort algorithm?

3. Give a (possibly randomized) algorithm with worst-case adaptivity 1 (aka 2 stages) and
expected number of comparisons n*2.

Hint - you may find the following derivations useful:

(1) Suppose k + £ < n. If | sample two sets of size k, £ at random (it's enough that
one of them is random!) out of n elements, the probability that they do not intersect
Is given by:

of ways of picking k out of n — £
of ways of picking k out of n

(")

Pr[sets don't intersect] =

(=0 n—k)!
~ nl(n—k =2
n—2o\"
=("+)
Se—k(/n.

(2) If I sum the above expression for many k's, | have:

k<b 00 1
—ke/ —k&/n __ —
;e "<k§;e "= = 0(n/0).

	Expectation
	Light Bulbs and Sockets
	Batch Statistics
	Sorting with Low Adaptivity

