
CS 161 (Stanford, Fall 2025)
Optional Extra Section 4 Problems

1 Red-Black Trees

1.1

If the length of a path from the root of a red-black tree to one of the leaf NIL nodes is 50,
what could be the length of another path from the root to some other NIL node?

2 Binary Search Trees

2.1 True or False

Which of the following statements are true?

(a) The height of a binary search tree with n nodes cannot be smaller than Θ(log n).

(b) All the operations supported by a binary search tree (except OutputSorted) run in
O(log n) time.

3 Hashing

3.1 Hash Tables Gone Crazy

In this problem, we will explore linear probing. Suppose we have a hash table H with n buckets,
universe U = {1, 2, . . . , n}, and a uniformly random hash functions h : U → {1, 2, . . . , n}.

When an element u arrives, we first try to insert into bucket h(u). If this bucket is occupied,
we try to insert into h(u) + 1, then h(u) + 2, and so on (wrapping around after n). If all
buckets are occupied, output Fail and don’t add u anywhere. If we ever find u while doing
linear probing, do nothing.

Throughout, suppose that there are m ≤ n distinct elements from U being inserted into H.
Furthermore, assume that h is chosen after all m elements are chosen (that is, an adversary
cannot use h to construct their sequence of inserts).

1. (Warmup) Can we ever output Fail while inserting these m elements?

2. Above, we gave an informal algorithm for inserting an element u. Your next task is to
give algorithms for searching and deleting an element u from the table.

Hint: Be careful that the search and delete algorithm work together!

1



3. In this part, we will analyze the expected runtime of linear probing assuming that m =
n1/3 and that no deletions occur.

(a) Give an upper bound on the probability that h(u) = h(v) for some u, v that are a
part of these first m elements, assuming that m = n1/3.

Hint: You may need that P[at least one of E1, . . . , Ek happens] ≤
∑
i∈[k]P[Ei ]

given any random events E1, . . . , Ek .

(b) When inserting an element, define the number of probes it does as the number of
buckets it has to check, including the first empty bucket it looks at. For example,
if h(u), . . . , h(u) + 10 were occupied but h(u) + 11 was not then we would have
to check 12 buckets.

Prove that the expected number of total probes done when inserting m = n1/3

elements is O(m).

4 Graphs, DFS, BFS

4.1 True or False

1. If (u, v) is an edge in an undirected graph and during DFS, vertex v is completely explored
before vertex u, then u is an ancestor of v in the DFS tree.

2. In a directed graph, if there is a path from u to v and DFS visits u before visiting v , then
u is an ancestor of v in the DFS tree.

4.2 Bipartite Graphs

A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and
V such that every edge (u, v) connects a vertex from U to V or a vertex from V to U. A
bipartite graph is possible if the graph coloring is possible using two colors such that vertices
in a set are colored with the same color. In lecture, we saw an algorithm using BFS to
determine where a graph is bipartite. Design an algorithm using DFS to determine whether
or not an undirected graph is bipartite.

2


	Red-Black Trees
	

	Binary Search Trees
	True or False

	Hashing
	Hash Tables Gone Crazy

	Graphs, DFS, BFS
	True or False
	Bipartite Graphs


