CS 161 (Stanford, Fall 2025) Section 4

Binary Search and Red-Black Trees

Definitions
A Binary Search Tree (BST) is a binary tree where each node has a key where:

For any node n, n.key is larger than all of the keys in the subtree under n's left child, and
smaller than all of the keys in the subtree under n's right child.

More informally:
e Every LEFT descendant of a node has key less than that node.
e Every RIGHT descendant of a node has key larger than that node

A Red-Black Tree is a type of self-balancing Binary Search Tree (BST) that maintains
balance by ensuring that black nodes are evenly distributed and that there aren’'t too
many consecutive red nodes. It obeys the following rules:

e Every node is colored red or black.

The root node is a black node.

NIL children count as black nodes.

Children of a red node are black nodes.

For all nodes x: all paths from x to NIL's have the same number of black nodes.

1 Red-Black Trees

1.1

For each of the following examples, if the nodes can be colored red or black to make a
legitimate red-black tree, then give such a coloring. If not, then say that they cannot.



2

2.1

Binary Search Trees

Randomly Built BSTs

In this problem, we prove that the average depth of a node in a randomly built binary search
tree with n nodes is O(logn). A randomly built binary search tree with n nodes is one that
arises from inserting the n keys in random order into an initially empty tree, where each of
the n! permutations of the input keys is equally likely. Let d(x, T) be the depth of node x in
a binary tree T (The depth of the root is 0). Then, the average depth of a node in a binary
tree T with n nodes is

3
3.1

%Zd(x, 7).

Let the total path length P(T) of a binary tree T be defined as the sum of the depths
of all nodes in T, so the average depth of a node in T with n nodes is equal to ,—17P(T).
Show that P(T) = P(T.) + P(Tr) +n — 1, where T, and Tk are the left and right
subtrees of T, respectively.

Let P(n) be the expected total path length of a randomly built binary search tree with
n nodes. Show that P(n) = %Zf;ol(P(i) +P(n—i—1)+n—-1).

Show that P(n) = O(nlogn). You may cite a result previously proven in the context
of other topics covered in class.

Design a sorting algorithm based on randomly building a binary search tree. Show that
its (expected) running time is O(nlog n). Assume that a random permutation of n keys
can be generated in time O(n).

Hashing

Pattern matching with a rolling hash

In the Pattern Matching problem, the input is a text string T of length n and a pattern string
P of length m < n. Our goal is to determine if the text has a (consecutive) substringE] that
is exactly equal to the pattern (i.e. T[i...i+ m— 1] = P for some /).

1.
2.

3.

Design a simple O(mn)-time algorithm for this problem.

Can we find a more efficient algorithm using hash functions? One naive way to do
this is to hash P and every length-m substring of 7. What is the running time of this
solution?

Suppose that we had a universal hash family H, for length-m strings, where each

YIn general, subsequences are not assumed to be consecutive, but a substring is defined as a consecutive
subsequence.



hm € Hp, the sum of hashes of characters in the string:
hm(s) = h(S[0]) + - -+ + h(S[m — 1]). (1)

Explain how you would use this hash family to solve the pattern matching problem in
O(n) time.

(Hint: the idea is to improve over your naive algorithm by reusing your work.)

. Unfortunately, a family of “additive” functions like the one in the previous item cannot
be universal. Prove it.

. The trick is to have a hash function that looks almost like (I]): the hash function
treats each character of the string is a little differently to circumvent the issue you
discovered in the previous part, but they're still related enough that we can use our
work. Specifically, we will consider hash functions parameterized by a fixed large prime
p, and a random number x from 1, ..., p—1:

h(S) = ’"z—: S[i]-x" (mod p).

For fixed pair of strings S # S’, the probability over random choice of x that the hashes
are equal is at most m/p, i.e.

Pr[h.(S) = h(S)] < m/p.

(This follows from the fact that a polynomial of degree (m — 1) can have at most m
zeros. Do you see why?)

Design a randomized algorithm for solving the pattern matching problem. The algo-
rithm should have worst-case run-time O(n), but may return the wrong answer with
small probability (e.g. < 1/n). (Assume that addition, subtraction, multiplication, and
division modulo p can be done in O(1) time.)

. How would you change your algorithm so that it runs in expected time O(n), but always
return the correct answer?



4 Graphs, DFS, BFS

4.1 Graph Traversal

e

1. Perform DFS on the graph above starting from vertex A. Use lexicographical ordering
to break vertex ties. As you go, label each node with the start time and the finish time.
Highlight the edges in the tree generated from the search.

2. Perform BFS on the graph above starting from vertex A. Use lexicographical ordering to
break vertex ties. As you go, label each node with the discovery order. Highlight the edges
in the tree generated from the search.

3. Perform BFS on the graph above starting from vertex A. Use lexicographical ordering to
break vertex ties. As you go, label each node with the discovery order. Highlight the edges
in the tree generated from the search.



	Red-Black Trees
	

	Binary Search Trees
	Randomly Built BSTs

	Hashing
	Pattern matching with a rolling hash

	Graphs, DFS, BFS
	Graph Traversal


